A Newton-Type Method with Nonequivalence Deflation for Nonlinear Eigenvalue Problems Arising in Photonic Crystal Modeling

Tsung-Ming Huang

Department of Mathematics, National Taiwan Normal University

The First Annual Meeting of Applied Mathematic s: Frontier Aspects of Applied Mathematics, December 6-7, 2015, Taipei, Taiwan

Toint work

Wen-Wei Lin

Department of Applied Mathematics
National Chiao-Tung University

Volker Mehrmann

Institute fur Mathematik
TU Berlin

- Maxwell's equations with dispersive metallic materials
- Nonlinear eigenvalue problems
- Newton-type method for solving nonlinear eigenvalue problems
- Numerical results

Dispersive Maxwell equations

Photonic Crystals

- Periodic lattice composed of dielectric or metallic materials

- If we design a three-dimensional photonic crystal appropriately, there appears a frequency range where no electromagnetic eigenmode exists. Frequency ranges of this kind are called photonic band gaps.
- Light waves can be reflected, trapped, transported in photonic crystals.
- Governing equation:

$$
\varepsilon(\mathbf{r})= \begin{cases}\varepsilon_{1}, & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}) E(\mathbf{r})
$$

Maxwell's Equations for dispersive isotropic material

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- $E(\mathbf{r})$ denotes the electric field at position $\mathbf{r} \in \mathbb{R}^{3}$
- $\varepsilon(\mathbf{r}, \omega)$ denotes the permittivity, which is dependent on the position \mathbf{r} and the frequency ω
- Drude model

$$
\varepsilon(\mathbf{r}, \omega)= \begin{cases}1-\frac{\omega_{p}^{2}}{\omega^{2}+\mathrm{i} \Gamma_{p} \omega}, & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

- Drude-Lorentz model
$\varepsilon(\mathbf{r}, \omega)=\left\{\begin{array}{lc}\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+\mathrm{i} \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{\phi_{j}}}{\Omega_{j}-\omega-\mathrm{i} \Gamma_{j}}+\frac{e^{-\psi \phi_{j}}}{\Omega_{j}+\omega+\mathrm{i} \Gamma_{j}}\right), & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{array}\right.$

Bloch Theorem

- We are interested in finding E satisfying the quasi-periodic condition

$$
E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \mathbf{a}_{\ell}} E(\mathbf{r}), \quad \ell=1,2,3
$$

$\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the lattice translation vectors, k is a wave vector.

- Simple cubic (SC)

$$
\begin{aligned}
& \mathbf{a}_{1}=a\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right], \quad \mathbf{a}_{2}=a\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right] \\
& \mathbf{a}_{3}=a\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
& \begin{array}{l}
\text { pairwise angles } \\
\text { formed by these } \\
\text { vectors are } 60 \text { degree }
\end{array}
\end{aligned}
$$

- Face-centered cubic (FCC)

$$
\begin{aligned}
& \mathbf{a}_{1}=\frac{a}{\sqrt{2}}[1,0,0]^{\top}, \mathbf{a}_{2}=\frac{a}{\sqrt{2}}\left[\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right]^{\top} \\
& \mathbf{a}_{3}=\frac{a}{\sqrt{2}}\left[\frac{1}{2}, \frac{1}{2 \sqrt{3}}, \sqrt{\frac{2}{3}}\right]^{\top}
\end{aligned}
$$

Figures taken from Chern, Chang, Chang, Hwang, 2004

Finite difference Yee's scheme

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- Curl operator

$$
\nabla \times E=\left[\begin{array}{ccc}
0 & -\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial z} & 0 & -\frac{\partial}{\partial x} \\
-\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0
\end{array}\right]\left[\begin{array}{l}
E_{1} \\
E_{E_{2}} \\
E_{3}
\end{array}\right]
$$

- Central edge points

$$
\nabla \times H(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r}) \Rightarrow C^{*} \mathbf{h}=\omega^{2} B(\omega) \mathbf{e}
$$

- Central face points

$$
\nabla \times E(\mathbf{r})=H(\mathbf{r}) \Rightarrow C \mathbf{e}=\mathbf{h}
$$

where

$$
\begin{aligned}
& C=\left[\begin{array}{ccc}
0 & -C_{3} & C_{2} \\
C_{3} & 0 & -C_{1} \\
-C_{2} & C_{1} & 0
\end{array}\right] \in \mathbb{C}^{3 n \times 3 n} \\
& n=n_{1} n_{2} n_{3} \\
& C_{1}=I_{n_{2} n_{3}} \otimes K_{1} \in \mathbb{C}^{n \times n}, C_{2}=I_{n_{3}} \otimes K_{2} \in \mathbb{C}^{n \times n}, C_{3}=K_{3} \in \mathbb{C}^{n \times n}
\end{aligned}
$$

Finite Diff. Assoc. with Quasi-Periodic Cond.

$$
\begin{aligned}
& K_{1}=\frac{1}{\delta_{x}}\left[\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
e^{i 2 \pi \mathbf{k} \mathbf{a}_{1}} & & & -1
\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}, \\
& K_{2}=\frac{1}{\delta_{y}}\left[\begin{array}{cccc}
-I_{n_{1}} & I_{n_{1}} & & \\
& & \ddots & \ddots \\
& & -I_{n_{1}} & I_{n_{1}} \\
e^{12 \pi \mathbf{k} \cdot \mathbf{a}_{2}} J_{2} & & & -I_{n_{1}}
\end{array}\right] \in \mathbb{C}^{\left(n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}, \\
& K_{3}=\frac{1}{\delta_{z}}\left[\begin{array}{llll}
-I_{n_{1} n_{2}} & I_{n_{1} n_{2}} & & \\
& & \ddots & \ddots \\
\\
e^{12 \pi \mathbf{k} \mathbf{a}_{3}} J_{3} & & -I_{n_{1} n_{2}} & I_{n_{1} n_{2}} \\
& & -I_{n_{1} n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times n}
\end{aligned}
$$

Finite Diff. Assoc. with Quasi-Periodic Cond.

$$
E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})
$$

$$
\begin{aligned}
& K_{1}=\frac{1}{\delta_{x}}\left[\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
e^{i 2 \pi \mathrm{k} \mathbf{a}_{1}} & & & -1
\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}, \\
& K_{2}=\frac{1}{\delta_{y}}\left[\begin{array}{cccc}
-I_{n_{1}} & I_{n_{1}} & & \\
& \ddots & \ddots & \\
& & -I_{n_{1}} & I_{n_{1}} \\
\left.e^{12 \pi \mathrm{k} \mathrm{a}_{2}}\right) J_{2} & & & -I_{n_{1}}
\end{array}\right] \in \mathbb{C}^{\left(n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}, \\
& K_{3}=\frac{1}{\delta_{z}}\left[\begin{array}{cccc}
-I_{n, n_{2}} & I_{n_{1} n_{2}} & & \\
& \ddots & \ddots & \\
& & -I_{n_{1} n_{2}} & I_{n_{1} n_{2}} \\
e^{12 \pi \mathrm{k} \cdot \mathrm{a}} J_{3} & & & -I_{n_{1} n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times n}
\end{aligned}
$$

Finite Diff. Assoc. with Quasi-Periodic Cond.

$$
\begin{aligned}
& K_{1}=\frac{1}{\delta_{x}}\left[\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
e^{i 2 \pi \mathbf{k} \mathbf{a}_{1}} & & & -1
\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}, \\
& K_{2}=\frac{1}{\delta_{y}}\left[\begin{array}{cccc}
-I_{n_{1}} & I_{n_{1}} & & \\
& & \ddots & \ddots \\
& & -I_{n_{1}} & I_{n_{1}} \\
e^{12 \pi \mathbf{k} \cdot \mathbf{a}_{2}} J_{2} & & & -I_{n_{1}}
\end{array}\right] \in \mathbb{C}^{\left(n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}, \\
& K_{3}=\frac{1}{\delta_{z}}\left[\begin{array}{llll}
-I_{n_{1} n_{2}} & I_{n_{1} n_{2}} & & \\
& & \ddots & \ddots \\
\\
e^{12 \pi \mathbf{k} \mathbf{a}_{3}} J_{3} & & -I_{n_{1} n_{2}} & I_{n_{1} n_{2}} \\
& & -I_{n_{1} n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times n}
\end{aligned}
$$

Finite Diff. Assoc. with Quasi-Periodic Cond.

$$
\begin{aligned}
& K_{1}=\frac{1}{\delta_{x}}\left[\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
e^{i 2 \pi k \mathbf{k} \cdot a_{1}} & & & -1
\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}, \\
& K_{2}=\frac{1}{\delta_{y}}\left[\begin{array}{cccc}
-I_{n_{1}} & I_{n_{1}} & & \\
& & \ddots & \ddots \\
& & -I_{n_{1}} & I_{n_{1}} \\
e^{i 2 \pi \mathbf{k} \cdot \mathbf{a}_{2}} J_{2} & & & -I_{n_{1}}
\end{array}\right] \in \mathbb{C}^{\left(n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}, \\
& K_{3}=\frac{1}{\delta_{z}}\left[\begin{array}{llll}
-I_{n_{1} n_{2}} & I_{n_{1} n_{2}} & \\
& \ddots & \ddots & \\
& & -I_{n_{1} n_{2}} & I_{n_{1} n_{2}} \\
e^{i 2 \pi \mathbf{k} \cdot \mathbf{a}_{3}} J_{3} & & & -I_{n_{1} n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times n}
\end{aligned}
$$

- For SC lattice

$$
J_{2}=I_{n_{1}}, \quad J_{3}=I_{n_{1} n_{2}}
$$

Finite Diff. Assoc. with Quasi-Periodic Cond.

$$
\begin{aligned}
& K_{1}=\frac{1}{\delta_{x}}\left[\begin{array}{cccc}
-1 & 1 & & \\
& \ddots & \ddots & \\
& & -1 & 1 \\
e^{i 2 \pi k \mathbf{k} \mathbf{a}_{1}} & & & -1
\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}, \\
& K_{2}=\frac{1}{\delta_{y}}\left[\begin{array}{cccc}
-I_{n_{1}} & I_{n_{1}} & & \\
& & \ddots & \ddots \\
& & -I_{n_{1}} & I_{n_{1}} \\
e^{i 2 \pi k \mathbf{a}_{2}} J_{2} & & & -I_{n_{1}}
\end{array}\right] \in \mathbb{C}^{\left(n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}, \\
& K_{3}=\frac{1}{\delta_{z}}\left[\begin{array}{llll}
-I_{n_{1} n_{2}} & I_{n_{1} n_{2}} & & \\
& \ddots & \ddots & \\
& & -I_{n_{1} n_{2}} & I_{n_{1} n_{2}} \\
e^{i 2 \pi \mathbf{k} \mathbf{a}_{3}} J_{3} & & & -I_{n_{1} n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times n} \\
&
\end{aligned}
$$

- For SC lattice

$$
J_{2}=I_{n_{1}}, \quad J_{3}=I_{n_{1} n_{2}}
$$

- For FCC lattice
$J_{2}=\left[\begin{array}{cc}0 & e^{-12 \pi \mathbf{k} \mathbf{a}_{1}} I_{n_{1} / 2} \\ I_{n_{1} / 2} & 0\end{array}\right] \in \mathbb{C}^{n_{1} \times n_{1}}$,
$J_{3}=\left[\begin{array}{cc}0 & e^{-12 \pi \mathbf{k} \mathbf{a}_{2}} I_{1^{\frac{1}{n_{2}}}} \otimes I_{n_{1}} \\ I_{\frac{2}{3} n_{2}} \otimes J_{2} & 0\end{array}\right] \in \mathbb{C}^{\left(n n_{1} n_{2}\right) \times\left(n_{1} n_{2}\right)}$

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- Resulting nonlinear eigenvalue problem

$$
F(\omega) \mathbf{x} \equiv\left(C^{*} C-\omega^{2} B(\omega)\right) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

with

$$
B(\omega)=\varepsilon_{0} B_{n}+\varepsilon(\omega) B_{d}
$$

where B_{n} and B_{d} are diagonal, $B_{n}+B_{d}=I$

$$
\varepsilon(\mathbf{r}, \omega)= \begin{cases}1-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}, & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

$\varepsilon(\mathbf{r}, \omega)= \begin{cases}\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+l \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{\iota_{j}}}{\Omega_{j}-\omega-\imath \Gamma_{j}}+\frac{e^{-\iota \phi_{j}}}{\Omega_{j}+\omega+l \Gamma_{j}}\right), & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}$

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- Resulting nonlinear eigenvalue problem

$$
F(\omega) \mathbf{x} \equiv\left(C^{*} C-\omega^{2} B(\omega)\right) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

with

$$
B(\omega)=\varepsilon_{0} B_{n}+\varepsilon(\omega) B_{d}
$$

where B_{n} and B_{d} are diagonal, $B_{n}+B_{d}=I$

$$
\varepsilon(\mathbf{r}, \omega)= \begin{cases}1-\frac{\omega_{p}^{2}}{\omega^{2}+l \Gamma_{p} \omega}, & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

$\varepsilon(\mathbf{r}, \omega)= \begin{cases}\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+\imath \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{i \phi_{j}}}{\Omega_{j}-\omega-l \Gamma_{j}}+\frac{e^{-i \phi_{j}}}{\Omega_{j}+\omega+l \Gamma_{j}}\right), & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}$

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- Resulting nonlinear eigenvalue problem

$$
F(\omega) \mathbf{x} \equiv\left(C^{*} C-\omega^{2} B(\omega)\right) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

with

$$
B(\omega)=\varepsilon_{0} B_{n}+\varepsilon(\omega) B_{d}
$$

where B_{n} and B_{d} are diagonal, $B_{n}+B_{d}=I$

$$
\varepsilon(\mathbf{r}, \omega)= \begin{cases}1-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}, & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}
$$

$\varepsilon(\mathbf{r}, \omega)= \begin{cases}\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+l \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{\iota_{j}}}{\Omega_{j}-\omega-\imath \Gamma_{j}}+\frac{e^{-\iota \phi_{j}}}{\Omega_{j}+\omega+l \Gamma_{j}}\right), & \text { in material domain } \\ \varepsilon_{0}, & \text { otherwise }\end{cases}$

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- Resulting nonlinear eigenvalue problem

$$
F(\omega) \mathbf{x} \equiv\left(C^{*} C-\omega^{2} B(\omega)\right) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

with

$$
B(\omega)=\varepsilon_{0} B_{n}+\varepsilon(\omega) B_{d}
$$

where B_{n} and B_{d} are diagonal, $B_{n}+B_{d}=I$

$$
\varepsilon(\mathbf{r}, \omega)= \begin{cases}\begin{array}{|c|c}
1-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}, & \text { in material domain } \\
\varepsilon_{0}, & \text { otherwise }
\end{array} \text {, }\end{cases}
$$

$\varepsilon(\mathbf{r}, \omega)= \begin{cases}\begin{array}{|c}\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{i \phi_{j}}}{\Omega_{j}-\omega-i \Gamma_{j}}+\frac{e^{-i \phi_{j}}}{\Omega_{j}+\omega+l \Gamma_{j}}\right) \\ \varepsilon_{0},\end{array} & \text { in material domain } \\ \text { otherwise }\end{cases}$

Eigen-decomp. of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ for SC lattice

- Define

$$
\begin{aligned}
& D_{\mathbf{a}, m}=\operatorname{diag}\left(1, e^{\theta_{\mathbf{a}, m}}, \cdots, e^{(m-1) \theta_{\mathbf{a}, m}}\right), \\
& U_{m}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
e^{\theta_{m, 1}} & e^{\theta_{m, 2}} & \cdots & 1 \\
\vdots & \vdots & & \vdots \\
e^{(m-1) \theta_{m, 1}} & e^{(m-1) \theta_{m, 2}} & \cdots & 1
\end{array}\right] \in \mathbb{C}^{m \times m}, \quad \theta_{\mathbf{a}, m}=\frac{l 2 \pi \mathbf{k} \cdot \mathbf{a}}{m}, \quad \theta_{m, i}=\frac{l 2 \pi i}{m}
\end{aligned}
$$

- Define unitary matrix T as

$$
T=\frac{1}{\sqrt{n}}\left(D_{\mathbf{a}_{3}, n_{3}} \otimes D_{\mathbf{a}_{2}, n_{2}} \otimes D_{\mathbf{a}_{1}, n_{1}}\right)\left(U_{n_{3}} \otimes U_{n_{2}} \otimes U_{n_{1}}\right)
$$

Then it holds that

$$
C_{1} T=T \Lambda_{1}, \quad C_{2} T=T \Lambda_{2}, \quad C_{3} T=T \Lambda_{3}
$$

Eigen-decomp. of $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ for FCC lattice

- Define $\psi_{2}=\frac{n \pi k \cdot a_{1}}{n_{1}}$,

$$
D_{\mathbf{x}}=\operatorname{diag}\left(1, e^{\psi_{x}}, \cdots, e^{\left(n_{1}-1\right) \psi_{x}}\right)
$$

$$
\psi_{y, i}=\frac{i 2 \pi}{n_{2}}\left\{\mathbf{k} \cdot\left(\mathbf{a}_{2}-\frac{\mathbf{a}_{1}}{2}\right)-\frac{i}{2}\right\}, \quad \quad D_{y, i}=\operatorname{diag}\left(1, e^{\psi_{y, i}}, \cdots, e^{\left(n_{2}-1\right) \psi_{y, i}}\right),
$$

$$
\psi_{z, i+j}=\frac{i 2 \pi}{n_{3}}\left\{\mathbf{k} \cdot\left(\mathbf{a}_{3}-\frac{\mathbf{a}_{1}+\mathbf{a}_{2}}{3}\right)-\frac{i+j}{3}\right\}, \quad D_{z, i+j}=\operatorname{diag}\left(1, e^{\psi_{y, i t j}}, \cdots, e^{\left(n_{3}-1\right) \psi_{y, i+j}}\right)
$$

$$
\mathbf{x}_{i}=D_{\mathbf{x}} U_{n_{1}}(:, i), \quad \mathbf{y}_{i, j}=D_{\mathbf{y}, i} U_{n_{2}}(:, j)
$$

- Define unitary matrix T as

$$
\begin{aligned}
& T=\frac{1}{\sqrt{n}}\left[\begin{array}{llll}
T_{1} & T_{2} & \cdots & T_{n_{1}}
\end{array}\right] \in \mathbb{C}^{n \times n}, \quad T_{i}=\left[\begin{array}{llll}
T_{i, 1} & T_{i, 2} & \cdots & T_{i, n_{2}}
\end{array}\right] \in \mathbb{C}^{n \times\left(n_{2} n_{3}\right)}, \\
& T_{i, j}=\left(D_{z, i+j} U_{n_{3}}\right) \otimes\left(\mathbf{y}_{i, j} \otimes \mathbf{x}_{i}\right)
\end{aligned}
$$

Then it holds that

$$
C_{1} T=T \Lambda_{1}, \quad C_{2} T=T \Lambda_{2}, \quad C_{3} T=T \Lambda_{3}
$$

Eigen-decomposition

- Eigen-decomposition of A :

$$
\left[\begin{array}{ll}
Q_{0} & Q
\end{array}\right]^{*} A\left[\begin{array}{ll}
Q_{0} & Q
\end{array}\right]=\operatorname{diag}\left(0, \Lambda_{q}, \Lambda_{q}\right) \equiv \operatorname{diag}(0, \Lambda)
$$

where

$$
\left[\begin{array}{ll}
Q_{0} & Q
\end{array}\right]=\left(I_{3} \otimes T\right)\left[\begin{array}{ll}
\Pi_{0} & \Pi_{1}
\end{array}\right] \equiv\left(I_{3} \otimes T\right)\left[\begin{array}{lll}
\Pi_{0,1} & \Pi_{1,2} & \Pi_{1,2} \\
\Pi_{0,2} & \Pi_{1,3} & \Pi_{1,4} \\
\Pi_{0,3} & \Pi_{1,3} & \Pi_{1,6}
\end{array}\right]
$$

is unitary and $\Lambda_{q}=\Lambda_{1}^{*} \Lambda_{1}+\Lambda_{2}^{*} \Lambda_{2}+\Lambda_{3}^{*} \Lambda_{3}$

- $F(\omega)$ has n zero eigenvalues and no eigenvalue at infinity

$$
F(\omega) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

Numerical Challenging

Numerical Challenging

Numerical Challenging

Ritz values are
dragged toward zero
during the iteration

Numerical Challenging

Numerical Challenging

Numerical Challenging

Flow chart of our proposed method

$$
\begin{array}{r}
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x} \equiv \omega \tilde{B}(\omega) \mathbf{x} \\
\beta(\omega)=\omega^{-1} \\
\tilde{B}(\omega) \mathbf{x}=\omega^{-1} A \mathbf{x}=\beta(\omega) A \mathbf{x}
\end{array}
$$

Find the sol. ω_{*} of

$$
\beta(\omega)-\omega^{-1}=0
$$

Given ω_{0}

Non-equivalence deflated method for

$$
F(\omega) \mathbf{x} \equiv\left(A-\omega^{2} B(\omega)\right) \mathbf{x}=0
$$

Deflation

- Let $\underbrace{\mu_{1}, \ldots, \mu_{1}}_{m_{1}}, \underbrace{\mu_{2}, \ldots, \mu_{2}}_{m_{2}}, \ldots, \underbrace{\mu_{\theta}, \ldots, \mu_{e}}_{m_{\ell}}$: eigenvalues of $F(\omega)$
and $\quad X=\left[\begin{array}{llll}X_{1} & X_{2} & \cdots & X_{\ell}\end{array}\right], \quad X^{*} X=I_{m}, \quad X_{j} \in \mathbb{C}^{3 n \times m_{j}}$
- Define non-equivalence deflated NLEVP as

$$
\tilde{F}(\omega) \tilde{\mathbf{x}}:=\left(F(\omega) \prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)\right) \tilde{\mathbf{x}}
$$

- Theorem:

$$
\begin{aligned}
& \{\omega \mid \tilde{F}(\omega) \tilde{\mathbf{x}}=0, \tilde{\mathbf{x}} \neq 0\} \\
= & \{\omega \mid F(\omega) \mathbf{x}=0, \mathbf{x} \neq 0\} \backslash\left\{\mu_{1}, \cdots, \mu_{1}, \cdots, \mu_{\ell}, \cdots, \mu_{\ell}\right\} \cup\{\infty\}
\end{aligned}
$$

Furthermore, if $(\mu, \tilde{\mathbf{x}})$ is an eigenpair of $\tilde{F}(\omega)$, then (μ, \mathbf{x}) is an eigenpair of $F(\omega)$ with

$$
\mathbf{x}=\prod_{j=1}^{\ell}\left(I-\frac{\mu}{\mu-\mu_{j}} X_{j} X_{j}^{*}\right) \tilde{\mathbf{x}}
$$

$$
\tilde{F}(\omega)=\left(F(\omega) \prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)\right)
$$

- Using the fact that $X^{*} X=I_{m}$, we obtain

$$
\prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)=I-\sum_{j=1}^{\ell} \frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}=I-\omega X D(\omega) X^{*},
$$

where

$$
D(\omega)=\operatorname{diag}\left(\left(\omega-\mu_{1}\right)^{-1} I_{m_{1}},\left(\omega-\mu_{2}\right)^{-1} I_{m_{2}}, \cdots,\left(\omega-\mu_{\ell}\right)^{-1} I_{m_{\ell}}\right)
$$

$$
\tilde{F}(\omega)=\left(F(\omega) \prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)\right)
$$

- Using the fact that $X^{*} X=I_{m}$, we obtain

$$
F(\omega) \equiv A-\omega^{2} B(\omega)
$$

$$
\prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)=I-\sum_{j=1}^{\ell} \frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}=I-\omega X D(\omega) X^{*},
$$

where

$$
D(\omega)=\operatorname{diag}\left(\left(\omega-\mu_{1}\right)^{-1} I_{m_{1}},\left(\omega-\mu_{2}\right)^{-1} I_{m_{2}}, \cdots,\left(\omega-\mu_{\ell}\right)^{-1} I_{m_{\ell}}\right)
$$

- Reformulate $\tilde{F}(\omega)$ as

$$
\tilde{F}(\omega)=A-\omega\left[\omega B(\omega)+\left(A-\omega^{2} B(\omega)\right) X D(\omega) X^{*}\right]
$$

$$
\tilde{F}(\omega)=\left(F(\omega) \prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{n}\right)\right)
$$

- Using the fact that $X^{*} X=I_{m}$, we obtain

$$
F(\omega) \equiv A-\omega^{2} B(\omega)
$$

$$
\prod_{j=1}^{\ell}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}\right)=I-\sum_{j=1}^{\ell} \frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{*}=I-\omega X D(\omega) X^{*},
$$

where

$$
D(\omega)=\operatorname{diag}\left(\left(\omega-\mu_{1}\right)^{-1} I_{m_{1}},\left(\omega-\mu_{2}\right)^{-1} I_{m_{2}}, \cdots,\left(\omega-\mu_{\ell}\right)^{-1} I_{m_{\ell}}\right)
$$

- Reformulate $\tilde{F}(\omega)$ as

$$
\tilde{F}(\omega)=A-\omega\left[\omega B(\omega)+\left(A-\omega^{2} B(\omega)\right) X D(\omega) X^{*}\right]
$$

- Define

$$
\tilde{B}(\omega)= \begin{cases}\omega B(\omega) & \text { for } F(\omega) \\ \omega B(\omega)+\left(A-\omega^{2} B(\omega)\right) X D(\omega) X^{*} & \text { for } \tilde{F}(\omega)\end{cases}
$$

Then, these two NLEVP can be represented as the general form

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x} .
$$

$$
\begin{array}{r}
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x} \equiv \omega \tilde{B}(\omega) \mathbf{x} \\
\beta(\omega)=\omega^{-1} \\
\tilde{B}(\omega) \mathbf{x}=\omega^{-1} A \mathbf{x}=\beta(\omega) A \mathbf{x}
\end{array}
$$

Given ω_{0}

Null-space free method

 for$$
\beta\left(\omega_{k}\right) A \mathbf{x}=\tilde{B}\left(\omega_{k}\right) \mathbf{x}
$$

Huge zero eigenvalues

$$
\left[\begin{array}{ll}
Q_{0} & Q
\end{array}\right]^{*} A\left[\begin{array}{ll}
Q_{0} & Q
\end{array}\right]=\operatorname{diag}\left(0, \Lambda_{q}, \Lambda_{q}\right) \equiv \operatorname{diag}(0, \Lambda)
$$

$$
A \mathbf{x}=\beta\left(\omega_{k}\right)^{-1} \tilde{B}\left(\omega_{k}\right) \mathbf{x} \equiv \lambda \tilde{B}\left(\omega_{k}\right)
$$

n zero eigenvalues

Null-space free method

- Theorem:

$$
Q^{*} A Q=\Lambda
$$

$$
\operatorname{span}\left(\tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right)=\operatorname{span}\left\{\mathbf{x} \mid A \mathbf{x}=\lambda \tilde{B}\left(\omega_{k}\right) \mathbf{x}, \lambda \neq 0\right\}
$$

and

$$
\left\{\lambda \neq 0 \mid A \mathbf{x}=\lambda \tilde{B}\left(\omega_{k}\right) \mathbf{x}\right\}=\left\{\lambda \mid \Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}=\lambda \mathbf{u}\right\}
$$

- Null-space free SEP

$$
A \mathbf{x}=\lambda \tilde{B}\left(\omega_{k}\right) \mathbf{x} \rightarrow K\left(\omega_{k}\right) \mathbf{u} \equiv\left(\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{u}=\lambda \mathbf{u}
$$

- Dim. of GEP and SEP are 3n and $2 n$, respectively
- GEP and SEP have same $2 n$ nonzero eigenvalues. SEP has no zero eigenvalues

Jacobi-Davidson method for $K\left(\omega_{k}\right) \mathbf{u}=\lambda \mathbf{u}$

Given V with $V^{*} V=I_{m}$

Solve $\left(V^{*} K\left(\omega_{k}\right) V\right) \mathbf{z}=\lambda \mathbf{z}$
$(\theta, \mathbf{u}=V \tilde{\mathbf{z}}):$ Ritz pair, $\quad \mathbf{r}=K\left(\omega_{k}\right) \mathbf{u}-\theta \mathbf{u}$

Solve $\left(I-\mathbf{u u}^{*}\right)\left(K\left(\omega_{k}\right)-\theta I\right)\left(I-\mathbf{u u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}$

$$
\mathbf{v}=\left(I-V V^{*}\right) \mathbf{t}, \quad V:=\left[V, \mathbf{v} /\|\mathbf{v}\|_{2}\right]
$$

Jacobi-Davidson method for $K\left(\omega_{k}\right) \mathbf{u}=\lambda \mathbf{u}$

Given V with $V^{*} V=I_{m}$

$$
K\left(\omega_{k}\right) \mathbf{v} \equiv\left(\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{v}
$$

Solve $\left(V^{*} K\left(\omega_{k}\right) V\right) \mathbf{z}=\lambda \mathbf{z}$
$(\theta, \mathbf{u}=V \tilde{\mathbf{z}}):$ Ritz pair, $\quad \mathbf{r}=K\left(\omega_{k}\right) \mathbf{u}-\theta \mathbf{u}$

Solve $\left(I-\mathbf{u u}^{*}\right)\left(K\left(\omega_{k}\right)-\theta I\right)\left(I-\mathbf{u u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}$

$$
\mathbf{v}=\left(I-V V^{*}\right) \mathbf{t}, V:=\left[V, \mathbf{v} /\|\mathbf{v}\|_{2}\right]
$$

Efficient computation $K\left(\omega_{k}\right) \mathbf{v}=\left(\Lambda^{1 / 2} Q^{2} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{v}$

- It is required to compute $Q^{*} \tilde{\mathbf{p}}, Q \tilde{\mathbf{q}}$, and $\tilde{B}(\omega)^{-1} \mathbf{d}$ for given vectors $\tilde{\mathbf{p}}, \tilde{\mathbf{q}}, \mathbf{d}$

Efficient computation $K\left(\omega_{k}\right) \mathbf{v}=\left(\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{v}$

- It is required to compute $Q^{*} \tilde{\mathbf{p}}, Q \tilde{\mathbf{q}}$, and $\tilde{B}(\omega)^{-1} \mathbf{d}$ for given vectors $\tilde{\mathbf{p}}, \tilde{\mathbf{q}}, \mathbf{d}$

```
Q=(l,\otimesT)[䓍]
```

- For computing $Q^{*} \tilde{\mathbf{p}}$ and $Q \tilde{\mathbf{q}}$, the matrix Q itself does not need to be formed explicitly because the matrix-vector products $T^{*} \mathbf{p}$ and $T \mathbf{q}$ can be evaluated by the fast Fourier transform efficiently

Efficient computation $K\left(\omega_{k}\right) \mathbf{v}=\left(\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{v}$

- It is required to compute $Q^{*} \tilde{\mathbf{p}}, Q \tilde{\mathbf{q}}$, and $\tilde{B}(\omega)^{-1} \mathbf{d}$ for given vectors $\tilde{\mathbf{p}}, \tilde{\mathbf{q}}, \mathbf{d}$

$$
Q=(t, \otimes \pi)\left[\begin{array}{ll}
\because & \ddots \\
\vdots
\end{array}\right]
$$

- For computing $Q^{*} \tilde{\mathbf{p}}$ and $Q \tilde{\mathbf{q}}$, the matrix Q itself does not need to be formed explicitly because the matrix-vector products $T^{*} \mathbf{p}$ and $T \mathbf{q}$ can be evaluated by the fast Fourier transform efficiently
- For computing $\tilde{B}(\omega)^{-1} \mathbf{d}$, represent $\tilde{B}(\omega)$ as \square

$$
\tilde{B}(\omega)=\omega B(\omega)+Y(\omega) X^{*}, \quad Y(\omega)=\left(A-\omega^{2} B(\omega)\right) X D(\omega)
$$

$$
\tilde{B}(\omega)^{-1}=\omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
$$

CPU Times for $\mathrm{T}^{*} \mathrm{p}$ and Tq with FCC

MATLAB

T** : fft

Tq : ifft

Jacobi-Davidson method for $K\left(\omega_{k}\right) \mathbf{u}=\lambda \mathbf{u}$

Given V with $V^{*} V=I_{m}$

Solve $\left(V^{*} K\left(\omega_{k}\right) V\right) \mathbf{z}=\lambda \mathbf{z}$
$(\theta, \mathbf{u}=V \tilde{\mathbf{z}}):$ Ritz pair, $\quad \mathbf{r}=K\left(\omega_{k}\right) \mathbf{u}-\theta \mathbf{u}$

Solve $\left(I-\mathbf{u u}^{*}\right)\left(K\left(\omega_{k}\right)-\theta I\right)\left(I-\mathbf{u u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}$

$$
\mathbf{v}=\left(I-V V^{*}\right) \mathbf{t}, \quad V:=\left[V, \mathbf{v} /\|\mathbf{v}\|_{2}\right]
$$

Solving correction equation

- In solving correction equation

$$
\left(I-\mathbf{u u}^{*}\right)\left(K\left(\omega_{k}\right)-\theta I\right)\left(I-\mathbf{u u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}
$$

we need to solve a preconditioning linear system

$$
\begin{gathered}
\left(I-\mathbf{u} \mathbf{u}^{*}\right) M_{K}\left(I-\mathbf{u} \mathbf{u}^{*}\right) \mathbf{z}=\mathbf{d}, \quad \mathbf{z} \perp \mathbf{u} \\
\mathbf{z}=M_{K}^{-1} \mathbf{d}+\eta M_{K}^{-1} \mathbf{u} \text { with } \eta=-\frac{\mathbf{u}^{*} M_{K}^{-1} \mathbf{d}}{\mathbf{u}^{*} M_{K}^{-1} \mathbf{u}}
\end{gathered}
$$

with M_{K} being the preconditioner of $K\left(\omega_{k}\right)-\theta I$.

Preconditioner M_{K}

$$
K\left(\omega_{k}\right)-\theta I=\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}-\theta I
$$

$$
\begin{aligned}
& \tilde{B}(\omega)^{-1} \\
= & \omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
U\left(\omega_{k}\right) & =\omega_{k}^{-1} \Lambda^{1 / 2} Q^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X \\
V\left(\omega_{k}\right) & =\left[\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right]^{*} \\
\Psi\left(\omega_{k}\right) & =D\left(\omega_{k}\right)^{-1}+\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X
\end{aligned}
$$

Preconditioner M_{K}

$$
K\left(\omega_{k}\right)-\theta I=\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}-\theta I
$$

$$
\begin{aligned}
& \tilde{B}(\omega)^{-1} \\
= & \omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
\end{aligned} \quad \begin{aligned}
& U\left(\omega_{k}\right)=\omega_{k}^{-1} \Lambda^{1 / 2} Q^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X \\
& V\left(\omega_{k}\right)=\left[\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right]^{*} \\
& \Psi\left(\omega_{k}\right)=D\left(\omega_{k}\right)^{-1}+\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X
\end{aligned}
$$

$$
K\left(\omega_{k}\right)-\theta I=\left(\Lambda^{1 / 2} Q^{*}\left(\omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}
$$

Preconditioner M_{K}

$$
K\left(\omega_{k}\right)-\theta I=\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}-\theta I
$$

$$
\begin{aligned}
& \tilde{B}(\omega)^{-1} \\
= & \omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
\end{aligned} \quad \begin{aligned}
U\left(\omega_{k}\right) & =\omega_{k}^{-1} \Lambda^{1 / 2} Q^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X \\
V\left(\omega_{k}\right) & =\left[\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right]^{*} \\
\Psi\left(\omega_{k}\right) & =D\left(\omega_{k}\right)^{-1}+\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X
\end{aligned}
$$

$$
K\left(\omega_{k}\right)-\theta I=\left(\Lambda^{1 / 2} Q^{*}\left(\omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}
$$

$$
\alpha_{a, k} I \approx \omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}
$$

Preconditioner M_{K}

$$
K\left(\omega_{k}\right)-\theta I=\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}-\theta I
$$

$$
\begin{aligned}
& \tilde{B}(\omega)^{-1} \\
= & \omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
\end{aligned} \quad \begin{aligned}
U\left(\omega_{k}\right) & =\omega_{k}^{-1} \Lambda^{1 / 2} Q^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X \\
V\left(\omega_{k}\right) & =\left[\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right]^{*} \\
\Psi\left(\omega_{k}\right) & =D\left(\omega_{k}\right)^{-1}+\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X
\end{aligned}
$$

$$
K\left(\omega_{k}\right)-\theta I=\left(\Lambda^{1 / 2} Q^{*}\left(\omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}
$$

$$
\alpha_{a, k} I \approx \omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}
$$

$$
M_{K}=\left(\Lambda^{1 / 2} Q^{*}\left(\alpha_{a, k} I\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}:=\Omega_{k}-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}
$$

Preconditioner M_{K}

$$
K\left(\omega_{k}\right)-\theta I=\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}-\theta I
$$

$$
\begin{aligned}
& \tilde{B}(\omega)^{-1} \\
= & \omega^{-1} B(\omega)^{-1}\left\{I-Y(\omega)\left(\omega I+X^{*} B(\omega)^{-1} Y(\omega)\right)^{-1} X^{*} B(\omega)^{-1}\right\}
\end{aligned} \quad \begin{aligned}
& U\left(\omega_{k}\right)=\omega_{k}^{-1} \Lambda^{1 / 2} Q^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X \\
& V\left(\omega_{k}\right)=\left[\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right]^{*} \\
& \Psi\left(\omega_{k}\right)=D\left(\omega_{k}\right)^{-1}+\omega_{k}^{-1} X^{*} B\left(\omega_{k}\right)^{-1}\left(A-\omega_{k}^{2} B\left(\omega_{k}\right)\right) X
\end{aligned}
$$

$$
\begin{gathered}
K\left(\omega_{k}\right)-\theta I=\left(\Lambda^{1 / 2} Q^{*}\left(\omega_{k}^{-1} B\left(\omega_{k}\right)^{-1}\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*} \\
\alpha_{a, k} I \approx \omega_{k}^{-1} B\left(\omega_{k}\right)^{-1} \\
M_{K}=\left(\Lambda^{1 / 2} Q^{*}\left(\alpha_{a, k} I\right) Q \Lambda^{1 / 2}-\theta I\right)-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}:=\Omega_{k}-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*} \\
\mathbf{z}=M_{K}^{-1} \mathbf{d}+\eta M_{K}^{-1} \mathbf{u} \\
M_{K}^{-1}=\Omega_{k}^{-1}\left\{I+U\left(\omega_{k}\right)\left(\Psi\left(\omega_{k}\right)-V\left(\omega_{k}\right)^{*} \Omega_{k}^{-1} U\left(\omega_{k}\right)\right)^{-1} V\left(\omega_{k}\right)^{*} \Omega_{k}^{-1}\right\}
\end{gathered}
$$

Efficiency of preconditioner M_{K}

bicgstabl

$$
M_{K}=\Omega_{k}-U\left(\omega_{k}\right) \Psi\left(\omega_{k}\right)^{-1} V\left(\omega_{k}\right)^{*}
$$

tol $=1.0 e-3$

$$
\left(I-\mathbf{u u}^{*}\right)\left(K\left(\omega_{k}\right)-\theta I\right)\left(I-\mathbf{u u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}
$$

Dimension $=1,769,472$

$$
\begin{array}{r}
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x} \equiv \omega \tilde{B}(\omega) \mathbf{x} \\
\beta(\omega)=\omega^{-1} \\
\tilde{B}(\omega) \mathbf{x}=\omega^{-1} A \mathbf{x}=\beta(\omega) A \mathbf{x}
\end{array}
$$

Given ω_{0}

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \quad \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega)
$$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{aligned}
& K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \quad \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
& \mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1
\end{aligned}
$$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{aligned}
& K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \quad \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
& \mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1 \\
& \beta(\omega)=\mathbf{v}^{*}(\omega) K(\omega)^{-1} \mathbf{u}(\omega)
\end{aligned}
$$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{array}{cc}
K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), & \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1 \Rightarrow & \mathbf{v}^{*}(\omega)^{\prime} \mathbf{u}(\omega)+\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)^{\prime}=0
\end{array}
$$

$\beta(\omega)=\mathbf{v}^{*}(\omega) K(\omega)^{-1} \mathbf{u}(\omega)$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{aligned}
& K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \quad \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
& \mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1 \\
& \beta(\omega)=\mathbf{v}^{*}(\omega) K(\omega)^{-1} \mathbf{u}(\omega) \\
& K(\omega) K(\omega)^{-1}=I
\end{aligned}
$$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{\psi}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{aligned}
& K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
& \mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1 \\
& \beta(\omega)=\mathbf{v}^{*}(\omega) K(\omega)^{-1} \mathbf{u}(\omega) \\
& \left.K(\omega) K(\omega)^{-1}=I \quad\left(K(\omega)^{-1}\right)^{\prime}=-K(\omega)^{-1} K(\omega)^{\prime} K(\omega)^{-1}\right)
\end{aligned}
$$

Computing $\beta^{\prime}(\omega) \quad K\left(\omega_{k}\right) u=\beta^{-1}\left(\omega_{k}\right) u$

- Let $\mathbf{u}(\omega)$ and $\mathbf{v}(\omega)$ with $\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1$ be the right and the left eigenvectors of $K(\omega)^{-1}$, respectively, corresponding to the eigenvalue $\beta(\omega)$

$$
\begin{aligned}
& K(\omega)^{-1} \mathbf{u}(\omega)=\beta(\omega) \mathbf{u}(\omega), \quad \mathbf{v}^{*}(\omega) K(\omega)^{-1}=\beta(\omega) \mathbf{v}^{*}(\omega) \\
& \mathbf{v}^{*}(\omega) \mathbf{u}(\omega)=1 \\
& \beta(\omega)=\mathbf{v}^{*}(\omega) K(\omega)^{-1} \mathbf{u}(\omega) \\
& K(\omega) K(\omega)^{-1}=I \rightarrow\left(K(\omega)^{-1}\right)^{\prime}=-K(\omega)^{-1} K(\omega)^{\prime} K(\omega)^{-1} \mathbf{u}(\omega)+\mathbf{v}^{*}(\omega) \mathbf{u}(\omega)^{\prime}=0
\end{aligned}
$$

- Using these three results, we can derive

$$
\beta^{\prime}(\omega)=\beta(\omega)^{2} \mathbf{v}^{*}(\omega) \Lambda^{1 / 2} Q^{*} \tilde{B}(\omega)^{-1} \tilde{B}(\omega)^{\prime} \tilde{B}(\omega)^{-1} Q \Lambda^{1 / 2} \mathbf{u}(\omega)
$$

Numerical results

Benchmark problems

- Face-centered cubic (FCC) lattice
- Matrix dimension $=3$ * $96^{\wedge} 3=2,654,208$

- Using MATLAB function bicgstabl with stopping tolerance $1.0 \mathrm{e}-3$ to solve correction equation

Band structure diagram for Drude model

$$
\varepsilon(\omega)=\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{\phi_{j}}}{\Omega_{j}-\omega-i \Gamma_{j}}+\frac{e^{-\phi_{j}}}{\Omega_{j}+\omega+i \Gamma_{j}}\right)
$$

Band structure diagram for Drude-

Total iteration of JD $\quad \sum_{k=1}^{m \# D\left(K\left(\omega_{k}^{(0)}\right)\right)}$

$$
\begin{array}{r}
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x} \equiv \omega \tilde{B}(\omega) \mathbf{x} \\
\beta(\omega)=\omega^{-1} \\
\tilde{B}(\omega) \mathbf{x}=\omega^{-1} A \mathbf{x}=\beta(\omega) A \mathbf{x}
\end{array}
$$

Given ω_{0}
Solve $K\left(\omega_{k}\right) \mathbf{u}=\lambda \mathbf{u}$
Newton's method
$\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta\left(\omega_{k}\right)-\omega_{k}^{-1}\right)$
Deflate eigenpair (ω, \mathbf{x})

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}
$$

Dimension $=1,769,472$

Convergence of Newton-type method

Clustering eigenvalues

Clustering eigenvalues

	Drude model	Drude-Lorentz model
μ_{7}	$1.352760915-2.15717754 \times 10^{-4} \imath$	$1.326911260-2.11350594 \times 10^{-3}{ }_{\imath}$
μ_{8}	$1.352771023-2.15790978 \times 10^{-4} \imath$	$1.326915939-2.11375183 \times 10^{-3}{ }_{\imath}$
μ_{9}	$1.352771589-2.15790991 \times 10^{-4} \imath$	$1.326916471-2.11375357 \times 10^{-3}{ }_{\imath}$
μ_{10}	$1.352774278-2.15790186 \times 10^{-4} \imath$	$1.326919090-2.11375510 \times 10^{-3} \imath_{\imath}$
μ_{11}	$1.354710739-2.15785421 \times 10^{-4} \imath$	$1.328746727-2.11897302 \times 10^{-3} \imath_{\imath}$
μ_{12}	$1.354711852-2.15790561 \times 10^{-4} \imath$	$1.328747433-2.11899196 \times 10^{-3} \imath_{\imath}$
μ_{13}	$1.354711871-2.15790691 \times 10^{-4} \imath$	$1.328747439-2.11899260 \times 10^{-3} \imath_{\imath}$
μ_{14}	$1.354711899-2.15790684 \times 10^{-4} \imath$	$1.328747467-2.11899263 \times 10^{-3}{ }_{\imath}$

[^0]
Clustering eigenvalues

- Convergence is heavily dependent on the choice of the initial value $\omega_{0}^{(d)}$
- It is important to provide a good initial value to guarantee convergence
- Switch to solve a new approximate eigenpair of NLEVP roughly by nonlinear Arnoldi method

	Drude model	Drude-Lorentz model
μ_{7}	$1.352760915-2.15717754 \times 10^{-4} \imath$	$1.326911260-2.11350594 \times 10^{-3} \imath_{\imath}$
μ_{8}	$1.352771023-2.15790978 \times 10^{-4} \imath$	$1.326915939-2.11375183 \times 10^{-3}{ }_{\imath}$
μ_{9}	$1.352771589-2.15790991 \times 10^{-4} \imath$	$1.326916471-2.11375357 \times 10^{-3}{ }_{\imath}$
μ_{10}	$1.352774278-2.15790186 \times 10^{-4} \imath$	$1.326919090-2.11375510 \times 10^{-{ }_{2}} \imath_{\imath}$
μ_{11}	$1.354710739-2.15785421 \times 10^{-4} \imath$	$1.328746727-2.11897302 \times 10^{-3}{ }_{\imath}$
μ_{12}	$1.354711852-2.15790561 \times 10^{-4} \imath$	$1.328747433-2.11899196 \times 10^{-3} \imath$
μ_{13}	$1.354711871-2.15790691 \times 10^{-4} \imath$	$1.328747439-2.11899260 \times 10^{-3} \imath_{\imath}$
μ_{14}	$1.354711899-2.15790684 \times 10^{-4} \imath$	$1.328747467-2.11899263 \times 10^{-3}{ }_{\imath}$

Table 6.1

Initial data

$$
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x} \equiv \omega \tilde{B}(\omega) \mathbf{x}
$$

$$
\beta(\omega)=\omega^{-1}
$$

Nonlinear Arnoldi method (NAr)

Given V with $V^{*} V=I_{m}$

$$
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x}
$$

Solve $V^{*}\left(A-\omega^{2} B(\omega)\right) V \mathbf{z}=0$

$$
(\tilde{\omega}, \tilde{\mathbf{x}}=V \tilde{\mathbf{z}}): \text { Ritz pair }
$$

$$
\text { Solve }\left(A-\sigma^{2} B(\sigma)\right) \tilde{\mathbf{v}}=\left(A-\tilde{\omega}^{2} B(\tilde{\omega})\right) \tilde{\mathbf{x}} \equiv \mathbf{r}
$$

$$
\mathbf{v}=\left(I-V V^{*}\right) \tilde{\mathbf{v}}, V:=\left[V, \mathbf{v} /\|\mathbf{v}\|_{2}\right]
$$

Nonlinear Arnoldi method (NAr)

Given V with $V^{*} V=I_{m}$

$$
A \mathbf{x}=\omega^{2} B(\omega) \mathbf{x}
$$

Solve $V^{*}\left(A-\omega^{2} B(\omega)\right) V \mathbf{z}=0$
$(\tilde{\omega}, \tilde{\mathbf{x}}=V \tilde{\mathbf{z}}):$ Ritz pair

$$
\text { Solve }\left(A-\sigma^{2} B(\sigma)\right) \tilde{\mathbf{v}}=\left(A-\tilde{\omega}^{2} B(\tilde{\omega})\right) \tilde{\mathbf{x}} \equiv \mathbf{r} \quad M=A-\tau I
$$

Solve $\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}$

$$
\mathbf{v}=\left(I-V V^{*}\right) \tilde{\mathbf{v}}, V:=\left[V, \mathbf{v} /\|\mathbf{v}\|_{2}\right]
$$

Solving preconditioning linear system

$$
\left(C^{\circ} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top} \quad C^{*} C=I_{3} \otimes\left(G^{*} G\right)-G G^{*}
$$

$$
C=\left[\begin{array}{ccc}
0 & -C_{3} & C_{2} \\
C_{3} & 0 & -C_{1} \\
-C_{2} & C_{1} & 0
\end{array}\right]
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
\begin{gathered}
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top}, C^{*} C=I_{3} \otimes\left(G^{*} G\right)-G G^{*} \\
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}+G G^{*} \mathbf{y} \\
C=\left[\begin{array}{ccc}
0 & -c_{3} & c_{2} \\
c_{3} & 0 & -c_{1} \\
-C_{2} & c_{1} & 0
\end{array}\right]
\end{gathered}
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
\begin{gathered}
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top} C^{*} C=I_{3} \otimes\left(G^{*} G\right)-G G^{*} \\
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}+G G^{*} \mathbf{y} \\
C=\left[\begin{array}{ccc}
0 & -C_{3} & c_{2} \\
C_{3} & 0 & -C_{1} \\
-C_{2} & C_{1} & 0
\end{array}\right] \quad C G=0 \\
G G^{*} \mathbf{y}=-\tau^{-1} G G^{*} \mathbf{d}
\end{gathered}
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
\begin{gathered}
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top} \\
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}+G G^{*} \mathbf{y}=I_{3} \otimes\left(G^{*} G\right)-G G^{*} \\
c=\left[\begin{array}{cc}
0 & -c_{3} \\
c_{3} \\
c_{3} & 0 \\
-c_{2} & c_{1} \\
c_{1} \\
\hline
\end{array}\right] \\
C G=0 \\
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}-\tau^{-1} G G^{*} \mathbf{d}
\end{gathered}
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top} \quad C^{*} C=I_{3} \otimes\left(G^{*} G\right)-G G^{*}
$$

$$
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}+G G^{*} \mathbf{y}
$$

$$
\begin{gathered}
c=\left[\begin{array}{ccc}
0 & -c_{3} & c_{2} \\
c_{3} & 0 & -c_{1} \\
-c_{2} & c_{1} & 0
\end{array}\right] \quad C G=0 \quad G G^{*} \mathbf{y}=-\tau^{-1} G G^{*} \mathbf{d} \\
\square\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}-\tau^{-1} G G^{*} \mathbf{d}
\end{gathered}
$$

$$
\Lambda_{q}=\Lambda_{1}^{*} \Lambda_{1}+\Lambda_{2}^{*} \Lambda_{2}+\Lambda_{3}^{*} \Lambda_{3} \quad C_{1} T=T \Lambda_{1}, \quad C_{2} T=T \Lambda_{2}, \quad C_{3} T=T \Lambda_{3}
$$

Solving preconditioning linear system

$$
\left(C^{*} C-\tau I\right) \mathbf{y}=\mathbf{d}
$$

$$
G=\left[C_{1}^{\top}, C_{2}^{\top}, C_{3}^{\top}\right]^{\top} \quad C^{*} C=I_{3} \otimes\left(G^{*} G\right)-G G^{*}
$$

$$
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}+G G^{*} \mathbf{y}
$$

$$
c=\left[\begin{array}{ccc}
0 & -c_{3} & c_{2} \\
c_{8} & c_{1} \\
-c_{2} & c_{1} & 0
\end{array}\right] \quad C G=0 \quad G G^{*} \mathbf{y}=-\tau^{-1} G G^{*} \mathbf{d}
$$

$$
\left\{I_{3} \otimes\left(G^{*} G\right)-\tau I\right\} \mathbf{y}=\mathbf{d}-\tau^{-1} G G^{*} \mathbf{d}
$$

$$
\Lambda_{q}=\Lambda_{1}^{*} \Lambda_{1}+\Lambda_{2}^{*} \Lambda_{2}+\Lambda_{3}^{*} \Lambda_{3} \quad C_{1} T=T \Lambda_{1}, \quad C_{2} T=T \Lambda_{2}, \quad C_{3} T=T \Lambda_{3}
$$

$$
\left(I_{3} \otimes \Lambda_{q}-\tau I\right) \tilde{\mathbf{y}}=\left(I-\tau^{-1}\left[\begin{array}{c}
\Lambda_{1} \\
\Lambda_{2} \\
\Lambda_{3}
\end{array}\right]\left[\begin{array}{lll}
\Lambda_{1}^{*} & \Lambda_{2}^{*} & \Lambda_{3}^{*}
\end{array}\right]\left(I_{3} \otimes T\right)^{*} \mathbf{d}, \quad \mathbf{y}=\left(I_{3} \otimes T\right) \tilde{\mathbf{y}}\right.
$$

Efficiency of preconditioner

Results for Drude model

Results for Drude-Lorentz model

$\varepsilon(\omega)=\varepsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega^{2}+\imath \Gamma_{p} \omega}+\sum_{j=1}^{2} \Omega_{j} A_{j}\left(\frac{e^{\iota \phi_{j}}}{\Omega_{j}-\omega-\imath \Gamma_{j}}+\frac{e^{-\iota \phi_{j}}}{\Omega_{j}+\omega+\imath \Gamma_{j}}\right)$

Summary

Conclusion

- Solving the nonlinear eigenvalue problem (NLEVP) arising from Yee's discretization of a three-dimensional dispersive metallic photonic crystal is a computational challenge.
- We have proposed a Newton-type method to compute one desired eigenpair of the NLEVP at a time.
- Once the desired eigenvalue is converged, it is then transformed to infinity by the proposed non-equivalence deflation scheme, while all other eigenvalues remain unchanged. The next successive eigenvalue thus becomes the smallest nonzero real part eigenvalue of the transformed NLEVP which is then again solved by the Newton-type method.
- In order to compute the clustering eigenvalues of the NLEVP, we propose a hybrid method by using the Jacobi-Davidson to solve the standard eigenvalue problems in the Newton-type method and the NAr to compute the initial data.
- The numerical results demonstrate that our proposed method is robust for solving both of well-separated and clustering eigenvalues of the NLEVP for the Drude and Drude-Lorentz models.

Thank you.

Backup Slides

Dispersive Maxwell equations

Nonlinear eigenvalue problems

Newton-type Methods for Solving

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}
$$

Numerical results

Dispersive Maxwell equations

Nonlinear eigenvalue problems

Newton-type Methods for Solving

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}
$$

Numerical results

Dispersive Maxwell equations

Nonlinear eigenvalue problems

Newton-type Methods for Solving
 $$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}
$$

Numerical results

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{l}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Wave vector k $E\left(\mathbf{r}+\mathbf{a}_{\ell}\right)=e^{\mathrm{i} 2 \pi \mathbf{k} \cdot \mathbf{a}_{\ell}} E(\mathbf{r})$

- Compute the band structure along the irreducible Brillouin zone for the lattice
- FCC

$$
X=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow U=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{4} \\
1 \\
\frac{1}{4}
\end{array}\right] \rightarrow L=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] \rightarrow G=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \rightarrow X \rightarrow W=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
0
\end{array}\right] \rightarrow K=\frac{2 \pi}{a}\left[\begin{array}{c}
\frac{3}{4} \\
\frac{3}{4} \\
0
\end{array}\right]
$$

- Eigenvalue problem depends on wave vector k

$$
\nabla \times \nabla \times E(\mathbf{r})=\omega^{2} \varepsilon(\mathbf{r}, \omega) E(\mathbf{r})
$$

- A sequence of EVP need to solve

Nonlinear Jacobi-Davidson method (NJD)

- For a given search subspace V, let $(\tilde{\omega}, \tilde{\mathbf{z}})$ be an eigenpair of

$$
V^{*}\left(A-\omega^{2} B(\omega)\right) V \mathbf{z}=0
$$

and let $\tilde{\mathbf{x}}=V \tilde{\mathbf{z}}$ be the associated Ritz vector

- The new search direction v is chosen as

$$
\left(I-\frac{\left(2 \tilde{\omega} B(\tilde{\omega})+\tilde{\omega}^{2} B^{\prime}(\tilde{\omega})\right) \tilde{\mathbf{x}} \tilde{\mathbf{x}}^{* *}}{\tilde{\mathbf{x}}^{*}\left(2 \tilde{\omega} B(\tilde{\omega})+\tilde{\omega}^{2} B^{\prime}(\tilde{\omega})\right) \tilde{\mathbf{x}}}\right)\left(A-\tilde{\omega}^{2} B(\tilde{\omega})\right)\left(I-\frac{\tilde{\mathbf{x} \mathbf{x}}}{\tilde{\mathbf{x}}^{*} \tilde{\mathbf{x}}}\right) \mathbf{v}=-\mathbf{r}, \quad \mathbf{v} \perp \tilde{\mathbf{x}}
$$

where σ is a given shift value. We employ a preconditioner

$$
M_{J}=\left(I-\frac{\left(2 \tilde{\omega} B B(\tilde{\omega})+\tilde{\omega}^{2} B^{\prime}(\tilde{\omega})\right) \tilde{\mathbf{x}} \tilde{\mathbf{x}}^{*}}{\tilde{\mathbf{x}}^{*}\left(2 \tilde{\omega} B(\tilde{\omega})+\tilde{\omega}^{2} B^{\prime}(\tilde{\omega})\right) \tilde{\mathbf{x}}}\right)\left(A-\tilde{\omega}^{2} \alpha_{\sigma} I\right)\left(I-\frac{\tilde{\mathbf{x}} \tilde{\mathbf{x}}^{*}}{\tilde{\mathbf{x}}^{*} \tilde{\mathbf{x}}}\right)
$$

- After re-orthogonalizing v against V , the vector is appended to V and one repeats this process until ($\tilde{\omega}, \tilde{\mathbf{x}}$) converges to the desired eigenpair.

Definitions

- Represent $F(\omega)$ as

$$
F(\omega)=P(\omega)+R(\omega)
$$

where $P(\omega)$ is a polynomial matrix of degree r and $R(\omega)$ is a rational polynomial matrix with entries being proper rational polynomial.

Definitions

- Represent $F(\omega)$ as

$$
F(\omega)=P(\omega)+R(\omega)
$$

where $P(\omega)$ is a polynomial matrix of degree r and $R(\omega)$ is a rational polynomial matrix with entries being proper rational polynomial.

- If $\omega_{0} \in \mathbb{C}$ and nonzero vector \mathbf{x} satisfy

$$
\operatorname{det}\left(F\left(\omega_{0}\right)\right)=0, \quad F\left(\omega_{0}\right) \mathbf{x}=0
$$

then $\left(\omega_{0}, \mathbf{x}\right)$ is called an eigenpair of $F(\omega)$

Definitions

- Represent $F(\omega)$ as

$$
F(\omega)=P(\omega)+R(\omega)
$$

where $P(\omega)$ is a polynomial matrix of degree r and $R(\omega)$ is a rational polynomial matrix with entries being proper rational polynomial.

- If $\omega_{0} \in \mathbb{C}$ and nonzero vector \mathbf{x} satisfy

$$
\operatorname{det}\left(F\left(\omega_{0}\right)\right)=0, \quad F\left(\omega_{0}\right) \mathbf{x}=0
$$

then $\left(\omega_{0}, \mathbf{x}\right)$ is called an eigenpair of $F(\omega)$

- $F(\omega)$ has an eigenvalue at infinity with eigenvector \mathbf{x} if

$$
\lim _{\omega \rightarrow \infty} \operatorname{det}\left(\omega^{-r} F(\omega)\right)=0, \quad \lim _{\omega \rightarrow \infty}\left(\omega^{-r} F(\omega)\right) \mathbf{x}=0
$$

$$
\tilde{F}(\omega) \tilde{\mathbf{x}}:=\left(F(\omega) \prod_{j=1}^{f}\left(I-\frac{\omega}{\omega-\mu_{j}} X_{j} X_{j}^{n}\right)\right) \tilde{\mathbf{x}}
$$

- Theorem

$$
\begin{aligned}
& \{\omega \mid \tilde{F}(\omega) \tilde{\mathbf{x}}=0, \tilde{\mathbf{x}} \neq 0\} \\
= & \{\omega \mid F(\omega) \mathbf{x}=0, \mathbf{x} \neq 0\} \backslash\left\{\mu_{1}, \cdots, \mu_{1}, \cdots, \mu_{\ell}, \cdots, \mu_{\ell}\right\} \cup\{\infty\}
\end{aligned}
$$

Furthermore, if $(\mu, \tilde{\mathbf{x}})$ is an eigenpair of $\tilde{F}(\omega)$, then (μ, \mathbf{x}) is an eigenpair of $F(\omega)$ with

$$
\mathbf{x}=\prod_{j=1}^{\ell}\left(I-\frac{\mu}{\mu-\mu_{j}} X_{j} X_{j}^{*}\right) \tilde{\mathbf{x}}
$$

- Remark: The orthonormal matrix X can be constructed by the convergent eigenvectors with using re-orthogonalization

Non-equivalence deflated algorithm

1: Set $X=[]$ and $\widetilde{B}(\omega)=\omega B(\omega)$.

$$
\left(\mu_{1}, \mathbf{x}_{1}\right), \ldots,\left(\mu_{\ell}, \mathbf{x}_{\ell}\right)
$$

2: for $d=1, \ldots, \ell$ do
3: Compute the desired eigenvalue/eigenvector pair $\left(\mu_{d}, \mathbf{x}_{d}\right)$ of $A \mathbf{x}=\omega \widetilde{B}(\omega) \mathbf{x}$;
4: \% Retrieve the eigenvector of $A x=\omega^{2} B(\omega) x$
5: \quad for $i=1, \ldots, d-1$ do
6: \quad Compute $\mathbf{x}_{d}=\left(I-\frac{\mu_{d}}{\mu_{d}-\mu_{i}} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{*}\right) \mathbf{x}_{d}$;
7: end for
8: \% Compute the orthonormal matrix X from the convergent eigenvectors
9: \quad Set $\tilde{\mathbf{x}}_{d}=\mathbf{x}_{d}$; Orthogonalize $\tilde{\mathbf{x}}_{d}$ against X and normalize $\tilde{\mathbf{x}}_{d}$;
10: \quad Expand $X=\left[X, \tilde{\mathbf{x}}_{d}\right]$;
11: \% Create the coefficient matrix of the new deflated nonlinear eigenvalue problem
12: Set

$$
\widetilde{B}(\omega)=\omega B(\omega)+\left(A-\omega^{2} B(\omega)\right) X D(\omega) X^{*}
$$

where $D(\omega)=\operatorname{diag}\left(\left(\omega-\mu_{1}\right)^{-1}, \cdots,\left(\omega-\mu_{d}\right)^{-1}\right)$;
13: end for

Non-equivalence deflated algorithm

1: Set $X=[]$ and $\widetilde{B}(\omega)=\omega B(\omega)$.

Newton-type
method

$$
\left(\mu_{1}, \mathbf{x}_{1}\right), \ldots,\left(\mu_{\ell}, \mathbf{x}_{\ell}\right)
$$

2: for $d=1, \ldots, \ell$ do
3: Compute the desiredeigenvalue/eigenvector pair $\left(\mu_{d}, \mathbf{x}_{d}\right)$ of $A \mathbf{x}=\omega \widetilde{B}(\omega) \mathbf{x}$;
4: \% Retrieve the eigenvector of $A x=\omega^{2} B(\omega) x$
5: \quad for $i=1, \ldots, d-1$ do
6: \quad Compute $\mathbf{x}_{d}=\left(I-\frac{\mu_{d}}{\mu_{d}-\mu_{i}} \tilde{\mathbf{x}}_{i} \tilde{\mathbf{x}}_{i}^{*}\right) \mathbf{x}_{d}$;
7: end for
8: \% Compute the orthonormal matrix X from the convergent eigenvectors
9: \quad Set $\tilde{\mathbf{x}}_{d}=\mathbf{x}_{d}$; Orthogonalize $\tilde{\mathbf{x}}_{d}$ against X and normalize $\tilde{\mathbf{x}}_{d}$;
10: \quad Expand $X=\left[X, \tilde{\mathbf{x}}_{d}\right]$;
11: \% Create the coefficient matrix of the new deflated nonlinear eigenvalue problem
12: Set

$$
\widetilde{B}(\omega)=\omega B(\omega)+\left(A-\omega^{2} B(\omega)\right) X D(\omega) X^{*}
$$

where $D(\omega)=\operatorname{diag}\left(\left(\omega-\mu_{1}\right)^{-1}, \cdots,\left(\omega-\mu_{d}\right)^{-1}\right)$;
13: end for

Jacobi-Davidson method for solving
 $K\left(\omega_{k}\right) \mathbf{u}=\lambda \mathbf{u}$

- Rewrite

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x} \Rightarrow \omega^{-1} A \mathbf{x}=\tilde{B}(\omega) \mathbf{x}
$$

- For a given ω_{k}, consider GEP

$$
\beta\left(\omega_{k}\right) A \mathbf{x}=\tilde{B}\left(\omega_{k}\right) \mathbf{x}
$$

- To find an eigenvalue ω_{*} of $A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}$ is equivalent to determine a root of the nonlinear equation

$$
\beta(\omega)-\omega^{-1}=0
$$

- Newton's method

$$
\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta\left(\omega_{k}\right)-\omega_{k}^{-1}\right)
$$

- Rewrite

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x} \Rightarrow \omega^{-1} A \mathbf{x}=\tilde{B}(\omega) \mathbf{x}
$$

- For a given ω_{k}, consider GEP

$$
\beta\left(\omega_{k}\right) A \mathbf{x}=\tilde{B}\left(\omega_{k}\right) \mathbf{x}
$$

- To find an eigenvalue ω_{*} of $A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}$ is equivalent to determine a root of the nonlinear equation

$$
\beta(\omega)-\omega^{-1}=0
$$

- Newton's method

Need $\beta\left(\omega_{k}\right)$ and $\beta^{\prime}\left(\omega_{k}\right)$

$$
\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta\left(\omega_{k}\right)-\omega_{k}^{-1}\right)
$$

Newton-type method for $A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}$

1: Set $k=0$.
2: repeat
3: Compute the eigenvalue β_{k}^{-1} with the smallest positive real part and the associated eigenvector \mathbf{u}_{k} of

$$
\begin{equation*}
\beta^{-1} \mathbf{u}=K\left(\omega_{k}\right) \mathbf{u} \equiv\left(\Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{u} \tag{1}
\end{equation*}
$$

4: Compute the left eigenvector \mathbf{v}_{k} of (1) corresponding to β_{k};
5: Compute $\beta^{\prime}\left(\omega_{k}\right)$ by

$$
\beta^{\prime}\left(\omega_{k}\right)=\beta_{k}^{2} \mathbf{v}_{k}^{*} \Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} \widetilde{B}\left(\omega_{k}\right)^{\prime} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k}
$$

6: \quad Compute ω_{k+1} by

$$
\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta_{k}-\omega_{k}^{-1}\right)
$$

7: \quad Set $k=k+1$;
8: until $\left|\omega_{k}-\omega_{k-1}\right|<t o l$.
9: Set $\mu_{d}=\omega_{k}$;
10: Compute the eigenvector $\mathbf{x}_{d}=\widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k}$.

Newton-type method for $A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}$

1: Set $k=0$.
2: repeat
3: Compute the eigenvalue β_{k}^{-1} with the smallest positive real part and the associated eigenvector \mathbf{u}_{k} of
Solve it by
Jacobi-Davidson

$$
\begin{equation*}
\beta^{-1} \mathbf{u}=K\left(\omega_{k}\right) \mathbf{u} \equiv\left(\Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{u} \tag{1}
\end{equation*}
$$

4: \quad Compute the left eigenvector \mathbf{v}_{k} of (1) corresponding to β_{k};
5: \quad Compute $\beta^{\prime}\left(\omega_{k}\right)$ by

$$
\beta^{\prime}\left(\omega_{k}\right)=\beta_{k}^{2} \mathbf{v}_{k}^{*} \Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} \widetilde{B}\left(\omega_{k}\right)^{\prime} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k}
$$

6: \quad Compute ω_{k+1} by

$$
\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta_{k}-\omega_{k}^{-1}\right) ;
$$

7: \quad Set $k=k+1$;
8: until $\left|\omega_{k}-\omega_{k-1}\right|<t o l$.
9: Set $\mu_{d}=\omega_{k}$;
10: Compute the eigenvector $\mathbf{x}_{d}=\widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k}$.

Dispersive Maxwell equations

Nonlinear eigenvalue problems

Newton-type Methods for Solving

$$
A \mathbf{x}=\omega \tilde{B}(\omega) \mathbf{x}
$$

Numerical results

Computing derivative

$$
\beta^{\prime}(\omega)
$$

Nonlinear Arnoldi method (NAr)

- For a given search subspace V , let $(\tilde{\omega}, \tilde{\mathbf{z}})$ be an eigenpair of

$$
V^{*}\left(A-\omega^{2} B(\omega)\right) V \mathbf{z}=0
$$

and let $\tilde{\mathbf{x}}=V \tilde{\mathbf{z}}$ be the associated Ritz vector

- The new search direction v is chosen as

$$
\mathbf{v}=\left(A-\sigma^{2} B(\sigma)\right)^{-1}\left[\left(A-\tilde{\omega}^{2} B(\tilde{\omega})\right) \tilde{\mathbf{x}}\right] \equiv\left(A-\sigma^{2} B(\sigma)\right)^{-1} \mathbf{r}
$$

where σ is a given shift value

- After re-orthogonalizing v against V , the vector is appended to V and one repeats this process until ($\tilde{\omega}, \tilde{\mathbf{x}}$) converges to the desired eigenpair.

Preconditioner of Solving Linear Systems

- Solve linear system

$$
\left(A-\sigma^{2} B(\sigma)\right) \mathbf{v}=\mathbf{r}
$$

- Since $B(\sigma)$ is diagonal, we employ a preconditioner

$$
M=A-\sigma^{2} \alpha_{\sigma} I \equiv C^{*} C-\tau I
$$

where α_{σ} is the average of the diagonal elements of $B(\sigma)$

- Apply the left-preconditioning M^{-1} to equation and obtain the system

$$
\left[I+\sigma^{2} M^{-1}\left(\alpha_{\sigma} I-B(\sigma)\right)\right] \mathbf{v}=M^{-1} \mathbf{r}
$$

- No need to compute a matrix-vector multiplication with A

Well-separated eigenvalues

1st, 2nd eigenvalues for Drude model

1st, 2nd eigenvalues for Drude model

Average iterations of bicgstabl and total iteration of JD

Average iterations of bicgstabl and total iteration of JD

Convergence of Newton-type method

The six smallest real part nonzero eigenvalues are denoted by (red) x
$\varepsilon(\omega)=1-\frac{\omega_{p}^{2}}{\omega^{2}+i \Gamma_{p} \omega}$
$K\left(\omega_{k}^{(d)}\right) \mathbf{u}=\lambda \mathbf{u}$, for $k=1, \ldots, m$

Only 3 to 7 iterations are needed for computing each eigenvalue

Convergence of Newton-type method

The six smallest real part nonzero eigenvalues are denoted by (red) x

$K\left(\omega_{k}^{(d)}\right) \mathbf{u}=\lambda \mathbf{u}$, for $k=1, \ldots, m$

- Only 3 to 7 iterations are needed for computing each eigenvalue
- The average ranges from 3.6 to 5.2 for all benchmark problems.
- Quadratic convergence of Newtontype method

Nonlinear Arnoldi method

Alternative Newton-type method

Set $k=0$.
repeat
while ($\left\|\mathbf{r}_{h}\right\| \geq \tau_{k}$) do
Compute the eigenvalue β_{k}^{-1} with the smallest positive real part, the associated eigenvector \mathbf{u}_{k} of

$$
\begin{equation*}
\beta^{-1} \mathbf{u}=\left(\Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{u} \tag{3.12}
\end{equation*}
$$

and the corresponding residual vector \mathbf{r}_{h} by JD or SIRA method with maximal iteration number m and the stopping tolerance τ_{k};
\% If $\left\|\mathbf{r}_{h}\right\|$ is not small enough, then switch to solve $A x=\omega^{2} B(\omega) x$ approximately (i.e., check eigenvalues to be clustered or not).
if $\left(\left\|\mathbf{r}_{h}\right\| \geq \tau_{k}\right)$ then
Use nonlinear Arnoldi method with suitable stopping tolerance τ_{a} to compute the approximate eigenvalue/eigenvector pair ($\omega_{a}, \mathbf{x}_{a}$) of the NLEVP (2.4), where ω_{a} is the closest eigenvalue to σ.

Set $\omega_{k}=\omega_{a} . \%$ Use ω_{k} as the new initial value to re-solve $\beta^{-1} \mathbf{u}=K\left(\omega_{k}\right) \mathbf{u}$. end if end while
Compute the left eigenvector \mathbf{v}_{k} of (3.12) corresponding to β_{k};
Compute $\beta^{\prime}\left(\omega_{k}\right)$ via

$$
\beta^{\prime}\left(\omega_{k}\right)=\beta_{k}^{2} \mathbf{v}_{k}^{*} \Lambda^{1 / 2} Q^{*} \widetilde{B}\left(\omega_{k}\right)^{-1} \widetilde{B}\left(\omega_{k}\right)^{\prime} \widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k} ;
$$

Compute ω_{k+1} by

$$
\omega_{k+1}=\omega_{k}-\left(\beta^{\prime}\left(\omega_{k}\right)+\omega_{k}^{-2}\right)^{-1}\left(\beta_{k}-\omega_{k}^{-1}\right) ;
$$

14: Set $k=k+1$ and determine stopping tolerance τ_{k};
until $\left|\omega_{k}-\omega_{k-1}\right|<t o l$.
Set $\mu_{d}=\omega_{k}$ and compute the eigenvector $\mathbf{x}_{d}=\widetilde{B}\left(\omega_{k}\right)^{-1} Q \Lambda^{1 / 2} \mathbf{u}_{k}$.

Summary of JD and preconditioner

$$
M_{K}^{-1}=\Omega_{k}^{-1}\left\{I+U\left(\omega_{k}\right)\left(\Psi\left(\omega_{k}\right)-V\left(\omega_{k}\right)^{*} \Omega_{k}^{-1} U\left(\omega_{k}\right)\right)^{-1} V\left(\omega_{k}\right)^{*} \Omega_{k}^{-1}\right\}
$$

- M_{K} is an efficient preconditioner for solving the correction equation

$$
\left(I-\mathbf{u u ^ { * }}\right)\left(K\left(\omega_{k}^{(d)}\right)-\theta I\right)\left(I-\mathbf{u} \mathbf{u}^{*}\right) \mathbf{t}=-\mathbf{r}, \quad \mathbf{t} \perp \mathbf{u}
$$

- Since the accuracy of solving correction Eq. can achieve to $1.0 \mathrm{e}-3$, only few iterations of JD are needed to solve

$$
K\left(\omega_{k}^{(d)}\right) \mathbf{u} \equiv\left(\Lambda^{1 / 2} Q^{*} \tilde{B}\left(\omega_{k}^{(d)}\right)^{-1} Q \Lambda^{1 / 2}\right) \mathbf{u}=\lambda \mathbf{u}
$$

Perodic Lattice

[^0]: Table 6.1

