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Photonic Crystals
Periodic lattice composed of dielectric or metallic materials  
 
 
 
 

If we design a three-dimensional photonic crystal appropriately, 
there appears a frequency range where no electromagnetic 
eigenmode exists. Frequency ranges of this kind are called 
photonic band gaps. 

Light waves can be reflected, trapped, transported in photonic 
crystals.   

Governing equation: 
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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Fig. 6.1. CPU time for computing T ⇤

p and Tq with various n.
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Fig. 6.2. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along

the boundary of first Brillouin zone. The frequency ! = a
p
�/(2⇡) is shown on the y-axis. The

radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping
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respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.



Maxwell’s Equations for dispersive isotropic material

        denotes the electric field at position  

           denotes the permittivity, which is dependent on 
the position    and the frequency 

Drude model 
 

Drude-Lorentz model
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Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
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2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
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Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
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We are interested in finding E satisfying the quasi-periodic 
condition 
 
             are the lattice translation vectors, k is a wave vector. 

Simple cubic (SC)  
 
 
 

Face-centered cubic (FCC) 

Bloch Theorem
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Figures taken from Chern, Chang, Chang, Hwang, 2004
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at half-integer points k þ 1=2 and integer points i and j. For
simplicity, we denote ðiþ 1=2; j; kÞ by a=2, ði; jþ 1=2; kÞ by
b=2 and ði; j; k þ 1=2Þ by c=2. To be consistent with the
above finite difference formulation, the double-curl operator
in eq. (3) is discretized to yield a discretization matrix A as
follows:

½AH%i; j;k &
Lxx Lxy Lxz

Lyx Lyy Lyz

Lzx Lzy Lzz

2

64

3

75

C.D.

Ha=2
x

Hb=2
y

Hc=2
z

2

64

3

75; ð12Þ

where ‘‘C.D.’’ denotes that the central difference is applied.
The matrix A has 39 finite difference terms. Appendix B
contains all the details. It is also noticed that the space
arrangement for the H field is equivalent to that in Yee’s
cell,33) but the formulation, which contains second-order
derivatives, is different from Yee’s scheme. In the finite
element method, the vector edge elements have been
proposed to satisfy the transversality condition.13) In their
formulations, the transversality condition is satisfied on each
individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.

If the matrix size is small, the eigenvalues can be obtained
by direct methods. However, the operation count is of order
N3, which becomes prohibitively large for large N. The
difficulty of large operation counts can be alleviated by an
iterative solver, but the large number of zero eigenvalues
causes another difficulty. Zero modes appear before any
nontrivial eigenmodes when we solve the eigenfrequencies
from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
the present study, deflation of zero modes is avoided by
introducing a projection operator onto the range space of the
matrix A, which will be discussed in the next section.

Next, it is very important to choose the domain of
computation that is advantageous to the finite difference
formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r
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a

s
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Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.
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Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0
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height a0
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, where a0 ¼ a=
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2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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element method, the vector edge elements have been
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individual basis function while in the present method, the
transversality condition is satisfied in a less obvious way.
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by direct methods. However, the operation count is of order
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causes another difficulty. Zero modes appear before any
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from the smallest one. Therefore, it is impractical and
inaccurate to deflate a large number of zero eigenmodes. In
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formulation. For the three types of configuration, the
domains of computation are chosen to be; (i) a cubic
coincident with the primitive cell for the modified simple
cubic lattice, as shown in Fig. 5, (ii) a tetragon coincident
with the primitive cell for the tetragonal square spiral

structure, as shown in Fig. 6, and (iii) a tetragon with one
edge aligned with one of the lattice translation vectors for
the diamond structure with sp3-like configuration. This
domain has and must have the same volume of the primitive
cell as shown in Fig. 7.

Finally, Bloch’s theorem is applied at the boundary of
domain of computation:

Hkðrþ aiÞ ¼ eik(aiHkðrÞ; ð13Þ

where Hk is the Bloch function for magnetic field associated
with the wave vector k in the first Brillouin zone. The letters
ai (i ¼ 1; 2; 3) denote the lattice translation vectors; (i) for
the modified simple cubic lattice, a1 ¼ að1; 0; 0Þ, a2 ¼
að0; 1; 0Þ and a3 ¼ að0; 0; 1Þ, (ii) for the tetragonal square
spiral structure, a1 ¼ að1; 0; 0Þ, a2 ¼ að0; 1; 0Þ and a3 ¼
cð0; 0; 1Þ, and (iii) for the diamond structure, a1 ¼ a0ð1; 0; 0Þ,
a2 ¼ a0ð1=2;

ffiffiffi
3

p
=2; 0Þ and a3 ¼ a0ð1=2; 1=2

ffiffiffi
3

p
;
ffiffiffiffiffiffiffiffi
2=3

p
Þ with

a0 ¼ a=
ffiffiffi
2

p
. In the last case, since a2 and a3 have the

component a0=2 in the x-direction, application of Bloch’s
theorem in the y- and z-directions should be additionally

r

aa

a

s

a1a2

a3

Fig. 5. Domain of computation for the modified simple cubic lattice in
Fig. 1 is a cube with side length a. The radius of the dielectric sphere is r
and the radius of the connecting cylinder is s.

aa

c

a1a2

a3

Fig. 6. Domain of computation for the tetragonal square spiral structure in
Fig. 2 is a tetragon with square of side length a and height c. The square
spiral structure is composed of circular cylinder with radius r, length L

and pitch c.

r

b

a′√3
2 a′

√2
3 a′

a1

a2

a3

Fig. 7. Domain of computation for the diamond structure with sp3-like
configuration in Fig. 3 is a tetragon with length a0, width a0

ffiffiffi
3

p
=2 and

height a0
ffiffiffiffiffiffiffiffi
2=3

p
, where a0 ¼ a=

ffiffiffi
2

p
with a the lattice constant. The radius of

the dielectric sphere is r. The connecting spheroid has minor axis length
b, and the foci located at the centers of the spheres.
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E(r + aℓ ) = ei2πk⋅aℓE(r), ℓ = 1,2,3
a1,a2,a3
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⎥
⎥
⎥
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⎥
⎥
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⎥
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eıφ j

Ω j −ω − ıΓ j

+ e− ıφ j

Ω j +ω + ıΓ j

⎛

⎝⎜
⎞

⎠⎟
,  in material domain

ε0,  otherwise
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⎨
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∇×∇× E(r) =ω 2ε(r,ω )E(r)

F(ω )x ≡ C∗C −ω 2B(ω )( )x ≡ A −ω 2B(ω )( )x = 0

B(ω ) = ε0Bn + ε(ω )Bd

Bn Bd Bn + Bd = I
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Da,m = diag 1,eθa ,m ,!,e(m−1)θa ,m( ),

Um =

1 1 ! 1
eθm ,1 eθm ,2 ! 1
" " "

e(m−1)θm ,1 e(m−1)θm ,2 ! 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∈"m×m , θa,m = ı2πk ⋅a
m

, θm,i = ı2πi
m

T = 1
n

Da3 ,n3
⊗ Da2 ,n2

⊗ Da1,n1( ) Un3
⊗Un2

⊗Un1( )

C1T = TΛ1, C2T = TΛ2, C3T = TΛ3

employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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xi = DxUn1
(:,i), yi, j = Dy,iUn2

(:, j)

T = 1
n

T1 T2 ! Tn1

⎡
⎣⎢

⎤
⎦⎥
∈"n×n , Ti = Ti,1 Ti,2 ! Ti,n2

⎡
⎣⎢

⎤
⎦⎥
∈"n×(n2n3 ),

Ti, j = Dz,i+ jUn3( )⊗ yi, j ⊗ xi( )

ψ x = ı2πk ⋅a1

n1

, Dx = diag 1,eψ x ,!,e(n1−1)ψ x( ),

ψ y,i = ı2π
n2

k ⋅ a2 −
a1

2
⎛
⎝⎜

⎞
⎠⎟ −

i
2

⎧
⎨
⎩

⎫
⎬
⎭
, Dy,i = diag 1,eψ y ,i ,!,e(n2−1)ψ y ,i( ),

ψ z,i+ j = ı2π
n3

k ⋅ a3 −
a1 + a2

3
⎛
⎝⎜

⎞
⎠⎟ −

i + j
3

⎧
⎨
⎩

⎫
⎬
⎭
, Dz,i+ j = diag 1,eψ y ,i+ j ,!,e(n3−1)ψ y ,i+ j( )
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lattice sites, each connected to its six nearest neighbors by
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al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
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Eigen-decomposition of A:  
 
 
where 
 
 
 
is unitary and 

         has n zero eigenvalues and no eigenvalue 
at infinity 

Q0 Q⎡
⎣

⎤
⎦
∗
A Q0 Q⎡
⎣

⎤
⎦ = diag 0,Λq ,Λq( ) ≡ diag 0,Λ( )

Q0 Q⎡
⎣

⎤
⎦ := I3 ⊗T( ) Π0 Π1

⎡
⎣

⎤
⎦ ≡ I3 ⊗T( )

Π0,1 Π1,1 Π1,2

Π0,2 Π1,3 Π1,4

Π0,3 Π1,5 Π1,6

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Λq = Λ1
∗Λ1 + Λ2

∗Λ2 + Λ3
∗Λ3

F(ω )

F(ω )x ≡ A −ω 2B(ω )( )x = 0
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How to efficiently solve NLEVP 

How to tackle the effect of huge zero eigenvalues 

How to compute clustering eigenvalues
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Ax =ω 2B(ω )x ≡ω !B(ω )x

!B(ω )x =ω −1Ax = β(ω )Ax

Solve !B(ω k )x = β(ω k )Ax

β(ω ) =ω −1

Given ω 0

Deflate (ω∗,x∗)

Ax =ω !B(ω )x

eigenpair (ω∗,x∗)

ω k+1 =ω k − β ′ (ω k )+ω k
−2( )−1

β(ω k )−ω k
−1( )

Newton's method

Find the sol. ω∗  of 
β(ω )−ω −1 = 0

✅



Non-equivalence 
deflated method for 
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F(ω )x ≡ A −ω 2B(ω )( )x = 0



Deflation
Let 
 
and 

Define non-equivalence deflated NLEVP as 
 

Theorem: 
 
 
Furthermore, if         is an eigenpair of       , then         is 
an eigenpair of         with 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X = X1 X2 ! Xℓ⎡
⎣

⎤
⎦, X∗X = Im , X j ∈!

3n×mj

!F(ω )x! := F(ω ) I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏
⎛

⎝
⎜

⎞

⎠
⎟ x!

µ1,…,µ1

m1

!"# $# ,µ2,…,µ2

m2

!"# $# ,…,µℓ,…,µℓ
mℓ

"#$ %$ :  eigenvalues of F(ω )

ω | !F(ω )x! = 0, x! ≠ 0{ }
= ω | F(ω )x = 0,x ≠ 0{ } \ µ1,!,µ1,!,µℓ,!,µℓ{ }∪ ∞{ }

(µ,x!) !F(ω ) (µ,x)
F(ω )

x = I − µ
µ − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏ x!

F(ω )x ≡ A −ω 2B(ω )( )x = 0

∞
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X∗X = Im

I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏ = I − ω
ω − µ jj=1

ℓ

∑ X j X j
∗ = I −ωXD(ω )X∗,

D(ω ) = diag (ω − µ1)
−1 Im1

,(ω − µ2 )−1 Im2
,!,(ω − µℓ )

−1 Imℓ( ).

!F(ω ) = F(ω ) I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏
⎛

⎝
⎜

⎞

⎠
⎟
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ℓ
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∗ = I −ωXD(ω )X∗,

D(ω ) = diag (ω − µ1)
−1 Im1

,(ω − µ2 )−1 Im2
,!,(ω − µℓ )

−1 Imℓ( ).
Reformulate          as  !F(ω )

!F(ω ) = A −ω ωB(ω )+ (A −ω 2B(ω ))XD(ω )X∗⎡⎣ ⎤⎦

F(ω ) ≡ A −ω 2B(ω )

!F(ω ) = F(ω ) I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏
⎛

⎝
⎜

⎞

⎠
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X∗X = Im

I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏ = I − ω
ω − µ jj=1

ℓ

∑ X j X j
∗ = I −ωXD(ω )X∗,

D(ω ) = diag (ω − µ1)
−1 Im1

,(ω − µ2 )−1 Im2
,!,(ω − µℓ )

−1 Imℓ( ).

Define  
 
 
Then, these two NLEVP can be represented as the general form

!B(ω ) =
ωB(ω ) for F(ω ),
ωB(ω )+ (A −ω 2B(ω ))XD(ω )X∗ for !F(ω )

⎧
⎨
⎪

⎩⎪

Ax =ω !B(ω )x.

Reformulate          as  !F(ω )
!F(ω ) = A −ω ωB(ω )+ (A −ω 2B(ω ))XD(ω )X∗⎡⎣ ⎤⎦

F(ω ) ≡ A −ω 2B(ω )

!F(ω ) = F(ω ) I − ω
ω − µ j

X j X j
∗⎛

⎝⎜
⎞

⎠⎟j=1

ℓ

∏
⎛

⎝
⎜

⎞

⎠
⎟
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Ax =ω 2B(ω )x ≡ω !B(ω )x

!B(ω )x =ω −1Ax = β(ω )Ax

Solve !B(ω k )x = β(ω k )Ax

β(ω ) =ω −1

Given ω 0

ω k+1 =ω k − β ′ (ω k )+ω k
−2( )−1

β(ω k )−ω k
−1( )

Deflate (ω ,x)

Ax =ω !B(ω )x

eigenpair (ω ,x)Newton's method

🆗

✅

!B(ω ) =ωB(ω )+ (A −ω 2B(ω ))X⎡⎣ ⎤⎦D(ω )X∗



Null-space free method 
for 
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β(ω k )Ax = !B(ω k )x



n zero eigenvalues

Huge zero eigenvalues
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Q0 Q⎡
⎣

⎤
⎦
∗
A Q0 Q⎡
⎣

⎤
⎦ = diag 0,Λq ,Λq( ) ≡ diag 0,Λ( )

Ax = β(ω k )−1 !B(ω k )x ≡ λ !B(ω k )

n zero eigenvalues

k wanted eigenvalues

Ritz values are 
dragged toward zero 
during the iteration



Null-space free method
Theorem: 
 
 
and  
 

Null-space free SEP 
 

Dim. of GEP and SEP are 3n and 2n, respectively 

GEP and SEP have same 2n nonzero eigenvalues.  
SEP has no zero eigenvalues 
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span !B(ω k )−1QΛ1/2( ) = span x | Ax = λ !B(ω k )x, λ ≠ 0{ }

λ ≠ 0 Ax = λ !B(ω k )x{ } = λ Λ1/2Q∗ !B(ω k )−1QΛ1/2u = λu{ }

Q∗AQ = Λ

n zero eigenvalues

Ax = λ !B(ω k )x K(ω k )u ≡ Λ1/2Q∗ !B(ω k )−1QΛ1/2( )u = λu



Jacobi-Davidson method for        
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Given V with V ∗V = Im

Solve (V ∗K(ω k )V )z = λz

(θ ,u = V z!) :  Ritz pair, r = K(ω k )u−θu

v = (I −VV ∗)t, V := [V ,v/‖v‖2 ]

K(ω k )u = λu

Solve (I − uu∗)(K(ω k )−θ I )(I − uu∗)t = −r, t ⊥ u
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Given V with V ∗V = Im

Solve (V ∗K(ω k )V )z = λz

(θ ,u = V z!) :  Ritz pair, r = K(ω k )u−θu

v = (I −VV ∗)t, V := [V ,v/‖v‖2 ]

K(ω k )u = λu

Solve (I − uu∗)(K(ω k )−θ I )(I − uu∗)t = −r, t ⊥ u

✅

K(ω k )v ≡ Λ1/2Q∗ !B(ω k )−1QΛ1/2( )v
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given vectors
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Q∗p! Qq! !B(ω )−1d
p!, q!, d

Efficient computation K(ω k )v = Λ1/2Q∗ !B(ω k )−1QΛ1/2( )v
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p!, q!, d

Q ≡ I3 ⊗T( )
! !
! !
! !

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
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⎥

For computing         and      , the matrix     itself 
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Q∗p! Qq! !B(ω )−1d
p!, q!, d

Q ≡ I3 ⊗T( )
! !
! !
! !

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

For computing         and      , the matrix     itself 
does not need to be formed explicitly because the 
matrix-vector products        and      can be 
evaluated by the fast Fourier transform  efficiently

Q∗p! Qq! Q

T ∗p Tq

For computing            , represent         as !B(ω )−1d !B(ω )
!B(ω ) =ωB(ω )+Y (ω )X∗, Y (ω ) = (A −ω 2B(ω ))XD(ω )

!B(ω )−1 =ω −1B(ω )−1 I −Y (ω ) ω I + X∗B(ω )−1Y (ω )( )−1
X∗B(ω )−1{ }

Efficient computation K(ω k )v = Λ1/2Q∗ !B(ω k )−1QΛ1/2( )v
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Eigendecomposition of Double-Curl Operator 19
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Fig. 6.1. CPU time for computing T ⇤
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Fig. 6.2. Band structure of the 3D photonic crystals with FCC lattice. The vectors k’s along

the boundary of first Brillouin zone. The frequency ! = a
p
�/(2⇡) is shown on the y-axis. The

radius of the sphere is r = 0.12a and the connecting spheroid has minor axis length s = 0.11a.

in MATLAB are used for the IPL and CG methods, respectively. The stopping

tolerances for eigs and pcg are set to be 104 ⇥ ✏/(2
q
��2

x

+ ��2

y

+ ��2

z

) and ✏

�

2
x

⇥ 10�3,

respectively, where ✏ ⇡ 2�52 is the floating-point relative accuracy in MATLAB. The
maximal number of Lanczos vectors for the restart in eigs is set to be 20. All
computations are carried out on a workstation with two Intel Quad-Core Xeon X5687
3.6 GHz CPUs, 48 GB main memory, the RedHat Linux operation system, and IEEE
double-precision floating-point arithmetic operations.

Figure 6.1(a) shows the timing results for computing T ⇤p and Tq by Algorithm 2
and 3, respectively. The matrix size of T ranges from 884, 736 to 94, 818, 816. In
particular, the dimension of T is n̄3

j

, where n̄
j

= 96 + 24j = n
1

= n
2

= n
3

for
j = 0, 1, . . . , 15. The average CPU time out of ten trials for each j is then plotted
in the figure. We can see Algorithms 2 and 3 are extraordinarily e�cient. They take
less than 10 seconds to finish a T ⇤p or Tq matrix-vector multiplication even for the
matrix T whose dimension is as large as 95 million. Figure 6.1(b) shows that the
complexity of T ⇤p and Tq is O(n log(n)).

Being equipped with these fast T ⇤p or Tq computational kernels, we evaluate how
the IPL method (Algorithm 1) performs, in terms of CPU time and iteration numbers,
to solve the eigenvalue problems for the band structure of the target photonic crystals.

MATLAB

T*p : fft

Tq : ifft
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Given V with V ∗V = Im

Solve (V ∗K(ω k )V )z = λz

(θ ,u = V z!) :  Ritz pair, r = K(ω k )u−θu

v = (I −VV ∗)t, V := [V ,v/‖v‖2 ]

K(ω k )u = λu

Solve (I − uu∗)(K(ω k )−θ I )(I − uu∗)t = −r, t ⊥ u ✅

🆗



In solving correction equation 
 
 
we need to solve a preconditioning linear system  
 
 
 
 
 
with       being the preconditioner of                 .

Solving correction equation

28

I − uu∗( )(K(ω k )−θ I ) I − uu∗( )t = −r, t ⊥ u

I − uu∗( )M K I − uu∗( )z = d, z ⊥ u

M K K(ω k )−θ I

z = MK
−1d +ηM K

−1u  with η = − u∗M K
−1d

u∗M K
−1u
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M K

K(ω k )−θ I = Λ1/2Q∗ !B(ω k )−1QΛ1/2 −θ I

!B(ω )−1

=ω −1B(ω )−1 I −Y (ω ) ω I + X∗B(ω )−1Y (ω )( )−1
X∗B(ω )−1{ }

U(ω k ) =ω k
−1Λ1/2Q∗B(ω k )−1(A −ω k

2B(ω k ))X

V (ω k ) = ω k
−1X∗B(ω k )−1QΛ1/2⎡⎣ ⎤⎦

∗

Ψ(ω k ) = D(ω k )−1 +ω k
−1X∗B(ω k )−1(A −ω k

2B(ω k ))X
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ε(ω ) = ε∞ −
ω p

2

ω 2 + ıΓ pω
+ Ω j

j=1

2

∑ Aj
eıφ j

Ω j −ω − ıΓ j

+ e− ıφ j

Ω j +ω + ıΓ j

⎛

⎝⎜
⎞

⎠⎟

ε(ω ) = 1−
ω p

2

ω 2 + ıΓ pω

Dimension = 1,769,472

bicgstabl

tol = 1.0e-3

employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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I − uu∗( )(K(ω k )−θ I ) I − uu∗( )t = −r, t ⊥ u

M K = Ωk −U(ω k )Ψ(ω k )−1V (ω k )∗

M K
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Ax =ω 2B(ω )x ≡ω !B(ω )x

!B(ω )x =ω −1Ax = β(ω )Ax

Solve !B(ω k )x = β(ω k )Ax

β(ω ) =ω −1

Given ω 0

ω k+1 =ω k − β ′ (ω k )+ω k
−2( )−1

β(ω k )−ω k
−1( )

Deflate (ω ,x)

Ax =ω !B(ω )x

eigenpair (ω ,x)Newton's method

🆗

🆗

✅



Computing 
Let          and          with                       be the right and 
the left eigenvectors of           , respectively,  
corresponding to the eigenvalue  
 

32

β ′ (ω )

u(ω ) v(ω ) v∗(ω )u(ω ) = 1
K(ω )−1

β(ω )

K(ω )−1u(ω ) = β(ω )u(ω ), v∗(ω )K(ω )−1 = β(ω )v∗(ω )

K(ω k )u = β −1(ω k )u
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Benchmark problems  
Face-centered cubic (FCC) lattice  

Matrix dimension = 3 * 96^3 = 2,654,208 

Using MATLAB function bicgstabl with stopping 
tolerance 1.0e-3 to solve correction equation

34

employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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It is important to provide a good initial 
value to guarantee convergence
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Conclusion
Solving the nonlinear eigenvalue problem (NLEVP) arising from Yee's 
discretization of a three-dimensional dispersive metallic photonic crystal is a 
computational challenge.  

We have proposed a Newton-type method to compute one desired eigenpair 
of the NLEVP at a time.  

Once the desired eigenvalue is converged, it is then transformed to infinity by 
the proposed  non-equivalence deflation scheme, while all other eigenvalues 
remain unchanged. The next successive eigenvalue thus becomes the 
smallest nonzero real part eigenvalue of the  transformed NLEVP which is 
then again solved by the Newton-type method.   

In order to compute the clustering eigenvalues of the NLEVP, we propose a 
hybrid method by using the Jacobi-Davidson to solve the standard eigenvalue 
problems in the Newton-type method and the NAr to compute the initial data.  

The numerical results demonstrate that our proposed method is robust for 
solving both of well-separated and clustering eigenvalues of the NLEVP for 
the Drude and Drude-Lorentz models. 46
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
two rather three.) (iii) As the third issue of importance, it is
of great interest to develop a fast algorithm for the
eigenvalue problem. An inverse method, accelerated by
multigrid technique with use of projection is proposed for
this purpose. The method exploits the sparsity of the matrix
for the eigenvalue problem in the finite difference formu-
lation. Because of the above mentioned difficulties, the
present method is a nontrivial extension of a similar method,
recently developed by the authors24) for computing photonic
band structures in two dimensions.

In this study, we compute the band structures for three
types of photonic structures. The first one is a modified
simple cubic lattice consisting of dielectric spheres on the
lattice sites, each connected to its six nearest neighbors by
thin circular cylinders, which was proposed by Biswas et
al.25) Figure 1 shows the modified simple cubic lattice. It is
noted that the original simple cubic structure comprising a
lattice of rods has been fabricated recently with advanced
silicon processing techniques.26) The second one is the
tetragonal square spiral structure comprising a lattice of
circular or square cylinders, which was proposed by Toader
and John,27,28) as shown in Fig. 2. Spiral structure was
discussed previously by Chutinan and Noda.29) The square
spiral structure is arranged to connect the lattice points of
diamond structure with specific order, and is amenable to the
current technique of fabrication GLAD (GLancing Angle
Deposition) as discussed in refs. 30 and 31. As a third
example, we propose a diamond structure that has sp3-like
configuration, composed of dielectric spheres with connect-
ing spheroids, as shown in Fig. 3. Diamond structures are
known to have large band gaps between relatively lower
branches either in diamond network or inverse diamond
structure.12,28) In the present study, the spheroids, instead of
circular cylinders, take the positions of ‘‘valence bonds’’ to
imitate the sp3 structure of the electrons of diamond atoms.
Recently, submicron diamond-lattice photonic crystals have
been successfully produced by two-photon laser nanofabri-

cation (photopolymerization).32)

The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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Eigenvalue problem 
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employing projections onto the range space of the discrete
matrix. (However, it is noted that the problem of many zeros
does not occur in the PWE as in each plane wave component
the number of polarizations is chosen to be the independent
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The order of presentation of the paper is organized as
follows. In §2, we show how to correctly formulate the finite
difference method for the double curl operator of the
photonic eigenvalue problem. In §3, we develop the
numerical method (inverse iteration with the full multigrid
acceleration) and present the fast algorithm, in which two
alternative methods of projection are proposed to avoid the
necessity of deflating zeros). In §4, we first present
numerical results that illustrate the efficiency of the
presently developed method. Then, the band structures are
computed for the modified simple cubic lattice, the tetrag-
onal square spiral structure (direct and inverse structure) and
the diamond structure with sp3-like configuration. Finally,
concluding remarks with a summary of results are drawn in
§5.

2. Basic Equations and Finite Difference Formulation

The electromagnetic waves propagating in the photonic
crystals are well described by Maxwell’s equations. For
linear isotropic and frequency-independent dielectric mate-
rials with permeability close to one, the time-harmonic

Fig. 1. Modified simple cubic lattice comprising dielectric spheres and
connecting thin circular cylinders.25)

Fig. 2. Tetragonal square spiral structure comprising circular cylin-
ders.27,28)

Fig. 3. diamond structure with sp3-like configuration comprising dielec-
tric spheres and connecting spheroids.
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Nonlinear Jacobi-Davidson method (NJD)

For a given search subspace V, let            be an eigenpair of  
 
 
and let             be the associated Ritz vector 

The new search direction v is chosen as  
 
 
 
where      is a given shift value. We employ a preconditioner  
 

After re-orthogonalizing v against V, the vector is appended  
to V and one repeats this process until          converges to the 
desired eigenpair.  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Definitions
Represent          as 
 
 
where          is a polynomial matrix of degree r and         
is a rational polynomial matrix with entries being proper 
rational polynomial.
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is a rational polynomial matrix with entries being proper 
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ω 0 ∈! x
det(F(ω 0 )) = 0, F(ω 0 )x = 0

(ω 0,x) F(ω )
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F(ω )

F(ω ) = P(ω )+ R(ω )
P(ω ) R(ω )

If            and nonzero vector     satisfy 
 
 
then            is called an eigenpair of 

ω 0 ∈! x
det(F(ω 0 )) = 0, F(ω 0 )x = 0

(ω 0,x) F(ω )

            has an eigenvalue at infinity with eigenvector     if  
 
F(ω )

lim
ω→∞

det(ω −rF(ω )) = 0, lim
ω→∞

(ω −rF(ω ))x = 0

x



Theorem 
 
 
 
 
Furthermore, if           is an eigenpair of         , then           
is an eigenpair of           with  
 
 

Remark: The orthonormal matrix       can be 
constructed by the convergent eigenvectors with using 
re-orthogonalization
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Non-equivalence deflated algorithm
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Non-equivalence deflated algorithm
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Newton-type 
method

(µ1,x1),…,(µℓ,xℓ )



Jacobi-Davidson 
method for solving
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K(ω k )u = λu



Rewrite 

For a given     , consider GEP 
  

To find an eigenvalue      of                     is 
equivalent to determine a root of the nonlinear 
equation 

Newton’s method

59

Ax =ω !B(ω )x ⇒ ω −1Ax = !B(ω )x

ω k

β(ω k )Ax = !B(ω k )x

ω∗ Ax =ω !B(ω )x

β(ω )−ω −1 = 0

ω k+1 =ω k − β ′ (ω k )+ω k
−2( )−1

β(ω k )−ω k
−1( )
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Newton-type method for 
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Ax =ω !B(ω )x



Newton-type method for 
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Ax =ω !B(ω )x

Solve it by 
Jacobi-Davidson 
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 Newton-type Methods for 
Solving                       

Ax =ω !B(ω )x

Numerical results

Nonlinear eigenvalue 
problems

Dispersive Maxwell 
equations



Computing derivative 
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Nonlinear Arnoldi method (NAr)
For a given search subspace V, let            be an eigenpair 
of  
 
and let             be the associated Ritz vector 

The new search direction v is chosen as  
 
 
where      is a given shift value 

After re-orthogonalizing v against V, the vector is 
appended to V and one repeats this process until      
converges to the desired eigenpair.
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Solve linear system  
 
  

Since           is diagonal, we employ a preconditioner  
 
 
where      is the average of the diagonal elements of 

Apply the left-preconditioning         to equation and obtain 
the system 

No need to compute a matrix-vector multiplication with A

Preconditioner of Solving Linear Systems
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Well-separated 
eigenvalues
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1st, 2nd eigenvalues for Drude model
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Average iterations of bicgstabl and total iteration 
of JD
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Average iterations of bicgstabl and total iteration 
of JD
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Convergence of Newton-type method

68

The six smallest real part nonzero 
eigenvalues are denoted by (red) x

ε(ω ) = 1−
ω p

2

ω 2 + ıΓ pω
K(ω k

(d ) )u = λu,  for k = 1,…,m

Only 3 to 7 iterations are needed for 
computing each eigenvalue



Convergence of Newton-type method
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The six smallest real part nonzero 
eigenvalues are denoted by (red) x

ε(ω ) = 1−
ω p

2

ω 2 + ıΓ pω
K(ω k

(d ) )u = λu,  for k = 1,…,m

Only 3 to 7 iterations are needed for 
computing each eigenvalue

The average ranges from 3.6 to 5.2 
for all benchmark problems.

Quadratic convergence of Newton-
type method 



Nonlinear Arnoldi 
method
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Alternative Newton-type method
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Summary of JD and preconditioner

        is an efficient preconditioner for solving the 
correction equation 
 

Since the accuracy of solving correction Eq. can 
achieve to 1.0e-3, only few iterations of JD are 
needed to solve
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Perodic Lattice


